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ABSTRACT Colorectal cancer is a common and deadly disease in the United States
accounting for over 50,000 deaths in 2020. This progressive disease is highly preventable
with early detection and treatment, but many people do not comply with the recom-
mended screening guidelines. The gut microbiome has emerged as a promising target
for noninvasive detection of colorectal cancer. Most microbiome-based classification efforts
utilize taxonomic abundance data from operational taxonomic units (OTUs) or amplicon
sequence variants (ASVs) with the goal of increasing taxonomic resolution. However, it
is unknown which taxonomic resolution is optimal for microbiome-based classification
of colorectal cancer. To address this question, we used a reproducible machine learning
framework to quantify classification performance of models based on data annotated to
phylum, class, order, family, genus, OTU, and ASV levels. We found that model perform-
ance increased with increasing taxonomic resolution, up to the family level where per-
formance was equal (P . 0.05) among family (mean area under the receiver operating
characteristic curve [AUROC], 0.689), genus (mean AUROC, 0.690), and OTU (mean
AUROC, 0.693) levels before decreasing at the ASV level (P , 0.05; mean AUROC,
0.676). These results demonstrate a trade-off between taxonomic resolution and pre-
diction performance, where coarse taxonomic resolution (e.g., phylum) is not distinct
enough, but fine resolution (e.g., ASV) is too individualized to accurately classify sam-
ples. Similar to the story of Goldilocks and the three bears (L. B. Cauley, Goldilocks and
the Three Bears, 1981), mid-range resolution (i.e., family, genus, and OTU) is “just right”
for optimal prediction of colorectal cancer from microbiome data.

IMPORTANCE Despite being highly preventable, colorectal cancer remains a leading
cause of cancer-related death in the United States. Low-cost, noninvasive detection
methods could greatly improve our ability to identify and treat early stages of disease. The
microbiome has shown promise as a resource for detection of colorectal cancer. Research
on the gut microbiome tends to focus on improving our ability to profile species and strain
level taxonomic resolution. However, we found that finer resolution impedes the ability to
predict colorectal cancer based on the gut microbiome. These results highlight the need for
consideration of the appropriate taxonomic resolution for microbiome analyses and that
finer resolution is not always more informative.

KEYWORDS 16S rRNA gene sequencing, colon cancer, machine learning, microbiome,
taxonomic level

Colorectal cancer is one of the most common cancers in men and women and a
leading cause of cancer-related deaths in the United States (1). Early detection and

treatment are essential to increase survival rates, but for reasons such as invasiveness
and high screening costs (i.e., colonoscopy), many people do not comply with recommended
screening guidelines (2). This prompts a need for low-cost, noninvasive detection methods. A
growing body of research points to the gut microbiome as a promising target for noninvasive
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detection of “screen relevant neoplasia” (SRN) consisting of advanced adenomas and carcino-
mas (3, 4). The diagnostic potential of the gut microbiome in detecting SRNs has been
explored through machine learning (ML) methods using abundances of operational taxo-
nomic unit (OTU) classifications based on amplicon sequencing of the 16S rRNA gene (3).
Recent work has pushed for the use of amplicon sequence variants (ASVs) to replace OTUs for
marker gene analysis because of the improved resolution with ASVs (5). However, it is unclear
whether OTUs are the optimal taxonomic resolution for classifying SRNs from microbiome
data or whether the additional resolution provided by ASVs is useful for ML classification.
Topçuo�glu et al. (6) recently demonstrated how to effectively apply machine learning (ML)
methods to microbiome-based classification problems and developed a framework for apply-
ing ML practices in a more reproducible way. This analysis utilizes the reproducible framework
developed by Topçuo�glu et al. to determine which ML method and taxonomic level produce
the best performing classifier for detecting SRNs frommicrobiome data.

Utilizing publicly available 16S rRNA sequence data from the stools of patients with
SRNs and healthy controls, we generated taxonomic abundance tables with mothur (7)
annotated to phylum, class, order, family, genus, OTU, and ASV levels. Using the taxonomic
abundance data and the mikropml R package (8), we quantified how reliably samples could
be classified as SRN or normal using five machine learning methods, including random forest,
L2-regularized logistic regression, decision tree, gradient boosted trees (XGBoost), and support
vector machine with radial basis kernel (SVM radial). Across the five machine learning methods
tested, model performance increased with increasing taxonomic level usually peaking around
genus/OTU level before dropping off slightly with ASVs (see Fig. S1 in the supplemental mate-
rial). Regardless of the taxonomic level, random forest (RF) models consistently had the largest
area under the receiver operating characteristic curve (AUROC). Within the RF model, the high-
est AUROCs were observed for family (mean AUROC, 0.689), genus (mean AUROC, 0.690), and
OTU (mean AUROC, 0.693) level data with no significant difference between the three (P .

0.05 [Fig. 1A and Fig. S2]). Performance with ASVs (mean AUROC, 0.676) was significantly lower
than with OTUs (P, 0.01) but was comparable to family (P = 0.06) and genus (P = 0.05) levels
(Fig. 1A). These results suggest that increased resolution improves model performance up to
the OTU level where further taxonomic resolution is not necessarily better for identifying indi-
viduals with SRNs based on microbiome composition.

FIG 1 Random forest model performance. (A) Strip plot of the area under the receiver operating characteristic
curve (AUROC) values on the test data set for 100 seeds predicting SRNs using a random forest model. Black
circles denote the means, and black lines denote the standard deviations. The gray dashed line denotes an
AUROC of 0.5 which is equivalent to random classification. Significance between taxonomic levels was
quantified by comparing the difference in mean AUROC and is denoted by letters A through E on the right
side of the plot; taxonomic levels with the same letter are in the same significance group and are not
significantly different from one another. (B) Strip plot of the sensitivity at a specificity of 90% across the 100
model iterations for each taxonomic level. Black circles denote the means, and black lines denote the standard
deviations. The letters W through Z on the right side of the plot denote the significance groups.
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While comparing AUROC values between models is a useful way to assess the overall
model performance, AUROC values summarize the performance across all thresholds
and can be misleading since models with the same AUROC can have different ROC curve
shapes (9). Depending on the intended implementation of the model, one may want to
optimize sensitivity over specificity or vice versa. In this case, the optimal model will detect as
many true-positive results (people with SRNs) as possible. To further compare the model per-
formance across taxonomic levels, we compared the sensitivity of the models at a specificity
of 90%. The highest sensitivity values were observed for family (mean sensitivity, 0.38), genus
(mean sensitivity, 0.39), and OTU (mean sensitivity, 0.37) level data (P. 0.05 [Fig. 1B]), consist-
ent with the AUROC results. Phylum (mean sensitivity, 0.21), class (mean sensitivity, 0.22), order
(mean sensitivity, 0.28), and ASV (mean sensitivity, 0.32) sensitivity values were all significantly
lower than family, genus, and OTU sensitivity values (P , 0.05 [Fig. 1B]). This analysis further
supports the observation that finer resolution does not improve SRN detection.

One hypothesis for the observation that model performance increases from phylum to
OTU level then drops at the ASV level is that at higher taxonomic levels (e.g., phylum), there
are too few taxa and too much overlap to reliably differentiate between cases and controls.
At the level of genus or OTU, there is enough data and variation, but at the ASV level, the
data are too specific to individuals and do not overlap enough. Examination of the preva-
lence of taxa in samples at each level supports this idea. A majority of taxa were present in
greater than 70% of samples at the phylum (67% of taxa) and class (63% of taxa) levels. The
opposite was observed at the OTU and ASV levels where 50% and 41% of taxa, respectively,
were present in only 20% or less of the samples (Fig. S3). Of note, the ML pipeline includes a
preprocessing step that occurred prior to training and classifying the ML models. For exam-
ple, perfectly correlated taxa provide the same information to build the model and thus can
be collapsed. Additionally, features with zero or near-zero variance across samples were
removed. Interestingly, despite starting with 104,106 ASVs, only 478 (0.5%) remained after
preprocessing. At the OTU level, 705 of the 20,079 OTUs (3.5%) remained after preprocessing
(Table 1). While the resolution provided by ASVs is useful in certain contexts (10, 11), these
results suggest that the resolution is too fine for use in machine learning classification of
SRNs based on microbiome composition.

A look into the most important taxa at each level for classifying samples revealed
some nesting where several genera and their higher taxonomic classifications were in the top
10 most important taxa (Fig. S4). For example, the genus Gemella was an important taxon at
the genus and OTU levels, and its higher classifications were also important (Firmicutes .
Bacilli . Bacillales . Bacillales Incertae Sedis XI . Gemella). Fusobacterium displayed a similar
pattern, except that the family level classification (Fusobacteriaceae) importance was ranked
16th out of 54 families. In the case of unclassified Lachnospiraceae, there were several OTUs
with this label that were in the top 10; however, at the genus level, this taxon was ranked
lower in importance (21st out of 115 genera), suggesting there may be some benefit to sepa-
rating different taxonomic groupings within Lachnospiraceae.

These results demonstrate a Goldilocks effect (12) such that consideration of the
appropriate taxonomic resolution for utilizing the microbiome as a predictive tool is

TABLE 1 Overview of the number of features at each taxonomic level before and after
preprocessing as described in Materials and Methods

Taxonomic
level

No. of features

% of features kept
after preprocessing

Before
preprocessing

After
preprocessing

Phylum 19 9 47.4
Class 36 19 52.8
Order 65 28 43.1
Family 124 54 43.5
Genus 316 115 36.4
OTU 20,079 705 3.5
ASV 104,106 478 0.5
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warranted. In general, we found that finer taxonomic resolution (e.g., ASV) did not add
additional sensitivity to predicting SRNs based on microbiome composition. Family, ge-
nus, and OTU level data all performed similarly. At the ASV level, the fine resolution
actually impeded model performance due to the sparsity of shared taxa and led to
decreased model performance. The tendency for ASV level annotation to split single
bacterial genomes into multiple taxa (13) could also be a contributing factor to the
sparsity of shared taxa. Additionally, these results indicate that there are not specific
individual bacterial strains that are useful to resolve SRNs, rather sets of closely related
bacterial taxa. Overall, either family, genus, or OTU level taxonomy appear to perform similarly
for predicting subjects with SRNs based on the composition of the gut microbiome. A poten-
tial benefit of utilizing genus or family level data could be that it may allow for merging data
generated from different 16S rRNA gene regions or sequencing platforms. Although this analy-
sis focused on a single disease and data set from that disease, we suspect that because of the
patchy nature of the human microbiome the general observation from our analysis will hold
in other diseases. Rather than interrogating data at the finest possible scale, we encourage
researchers to explore this concept further by identifying the coarsest taxonomic level that
provides the greatest signal between groups.

Data set. Raw 16S rRNA gene amplicon sequence data isolated from human gut
samples (14) was downloaded from NCBI Sequence Read Archive (accession no. SRP062005).
This data set contains stool samples from 490 subjects. Based on the available metadata,
samples categorized as normal, high risk normal, or adenoma were labeled “normal” for
this analysis, and samples categorized as advanced adenoma or carcinoma were labeled
as “screen relevant neoplasia” (SRN). This resulted in a total of 261 “normal” samples and
229 “SRN” samples.

Data processing. Sequence data were processed with mothur (1.44.3) (7) using the
SILVA reference database (v132) (15) to produce count tables for phylum, class, order, family,
genus, OTU, and ASV following the Schloss Lab MiSeq standard operating procedure (SOP)
described on the mothur website (https://mothur.org/wiki/miseq_sop/). ASV level data were
also produced using DADA2 (16) to ensure consistent results with a different pipeline. Data
were processed following the DADA2 pipeline, but setting pool=TRUE to infer ASVs from
the whole data set rather than per sample. The resulting ASV table was subsampled for con-
sistency with the mothur data. The DADA2-generated ASVs performed worse than the
mothur-generated ASVs (DADA2 ASV mean AUROC, 0.659; P, 0.05).

Machine learning. Machine learning models were run with the R package mikropml
(v0.0.2) (8) to predict the diagnosis category (normal versus SRN) of each sample. Data were
preprocessed to normalize values (scale/center), remove values with zero or near-zero var-
iance, and collapse colinear features using default parameters. Initially, the models were run
with default hyperparameters, but the models were expanded if the peak performance was at
the edge of the hyperparameter range. Each taxonomic model taxonomic level combination
(e.g., random forest on genus) was run with 100 different seeds. Each seed split the data into a
training (80%) and testing (20%) set, and output performance of the training and testing as
area under the receiver operating curve (AUROC).

To compare performance between taxonomic levels and models, P values were calcu-
lated as previously described (6). To compare sensitivity at 90% specificity, probabilities on
the test data set were collected for each seed and used to calculate sensitivity for specificity
values ranging from 0 to 1 in 0.01 increments. The sensitivity at a specificity of 90% was
pulled for each seed. The averaged ROC curves were plotted by taking the average and
standard deviation of the sensitivity at each specificity value. An optional output from the
mikropml package is the permuted feature importance which is quantified by iteratively per-
muting each feature in the model and assessing the change in model performance.
Features are presumed to be important if the performance of the model, measured by the
AUROC, decreases when that feature is permuted. Ranking of feature importance was deter-
mined by ordering the features based on the average change in AUROC across the 100
seeds where features with a larger decrease in AUROC are ranked higher in importance.

To quantify prevalence of the features, the number of samples with nonzero abundance
was divided by the total number of samples resulting in values ranging from 0 to 1 where 0
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indicates the feature is not found in any samples, 0.5 indicates the feature is found in half of
the samples, and 1 indicates the feature is found in all of the samples.

Data availability. All code is available at https://github.com/SchlossLab/Armour
_Resolution_mBio_2021.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.2 MB.
FIG S2, TIF file, 0.2 MB.
FIG S3, TIF file, 0.2 MB.
FIG S4, TIF file, 0.8 MB.
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