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ABSTRACT Colonic bacterial populations are thought to have a role in the develop-
ment of colorectal cancer with some protecting against inflammation and others ex-
acerbating inflammation. Short-chain fatty acids (SCFAs) have been shown to have
anti-inflammatory properties and are produced in large quantities by colonic bacte-
ria that produce SCFAs by fermenting fiber. We assessed whether there was an asso-
ciation between fecal SCFA concentrations and the presence of colonic adenomas or
carcinomas in a cohort of individuals using 16S rRNA gene and metagenomic shot-
gun sequence data. We measured the fecal concentrations of acetate, propionate,
and butyrate within the cohort and found that there were no significant associations
between SCFA concentration and tumor status. When we incorporated these con-
centrations into random forest classification models trained to differentiate between
people with healthy colons and those with adenomas or carcinomas, we found that
they did not significantly improve the ability of 16S rRNA gene or metagenomic
gene sequence-based models to classify individuals. Finally, we generated random
forest regression models trained to predict the concentration of each SCFA based on
16S rRNA gene or metagenomic gene sequence data from the same samples. These
models performed poorly and were able to explain at most 14% of the observed
variation in the SCFA concentrations. These results support the broader epidemio-
logical data that questions the value of fiber consumption for reducing the risks of
colorectal cancer. Although other bacterial metabolites may serve as biomarkers to
detect adenomas or carcinomas, fecal SCFA concentrations have limited predictive
power.

IMPORTANCE Considering that colorectal cancer is the third leading cancer-related
cause of death within the United States, it is important to detect colorectal tu-
mors early and to prevent the formation of tumors. Short-chain fatty acids (SC-
FAs) are often used as a surrogate for measuring gut health and for being anti-
carcinogenic because of their anti-inflammatory properties. We evaluated the
fecal SCFA concentrations of a cohort of individuals with different colonic tumor
burdens who were previously analyzed to identify microbiome-based biomarkers
of tumors. We were unable to find an association between SCFA concentration
and tumor burden or use SCFAs to improve our microbiome-based models of
classifying people based on their tumor status. Furthermore, we were unable to
find an association between the fecal community structure and SCFA concentra-
tions. Our results indicate that the association between fecal SCFAs, the gut mi-
crobiome, and tumor burden is weak.

KEYWORDS 16S rRNA, SCFA, colon cancer, machine learning, metagenomics,
microbial ecology, microbiome, random forest
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olorectal cancer is the third leading cancer-related cause of death within the United

States (1). Less than 10% of cases can be attributed to genetic risk factors (2). This
leaves a significant role for environmental, behavioral, and dietary factors (3, 4).
Colorectal cancer is thought to be initiated by a series of mutations that accumulate as
the mutated cells begin to proliferate, leading to adenomatous lesions, which are
succeeded by carcinomas (2). Throughout this progression, there are ample opportu-
nities for bacterial populations to have a role, as some bacteria are known to cause
mutations, induce inflammation, and accelerate tumorigenesis (5-7). Additional cross-
sectional studies of humans have identified microbiome-based biomarkers of disease
(8). These studies suggest that in some cases, it is the loss of bacterial populations that
produce short-chain fatty acids (SCFAs) that results in increased inflammation and
tumorigenesis.

Many microbiome studies use the concentrations of SCFAs and the presence of 16S
rRNA gene sequences from organisms and the genes involved in producing them as a
biomarker of a healthy microbiota (9, 10). Depending on the concentrations, SCFAs can
have proliferative activities at low concentrations or antiproliferative activities at higher
concentrations; they can also have anti-inflammatory activities (11). Direct supplemen-
tation of SCFAs or feeding of fiber caused an overall reduction in the tumor burden in
mouse models of colorectal cancer (12). These results suggest that supplementation
with fiber, which many colonic bacteria ferment to produce SCFAs, may confer bene-
ficial effects against colorectal cancer. Regardless, there is a lack of consistent evidence
that increasing SCFA concentrations can protect against colorectal cancer in humans.
Case-control studies that have investigated possible associations between SCFAs and
colon tumor status have been plagued by relatively small numbers of subjects but have
reported increased total and relative fecal acetate levels and decreased relative fecal
butyrate concentrations in subjects with colonic lesions (13). In randomized controlled
trials, fiber supplementation has been inconsistently associated with protection against
tumor formation and recurrence (14, 15). Such studies are confounded by difficulties
ensuring subjects took the proper dose and using subjects with prior polyp history who
may be beyond a point of benefiting from fiber supplementation. Together, these
findings temper enthusiasm for treatments that target the production of SCFAs or for
using them as biomarkers for protection against tumorigenesis.

Fecal SCFA concentrations did not vary with diagnosis or treatment. To test for
a significant association between colorectal cancer and SCFAs, we quantified the
concentration of acetate, propionate, and butyrate in feces of previously characterized
individuals with healthy colons (n = 172) and those with colonic adenomas (n = 198) or
carcinomas (n = 120) (16). We were unable to detect a significant difference in any
SCFA concentration across the diagnosis groups (all P> 0.15; Fig. 1A). Among the
individuals with adenomas and carcinomas, a subset (N,4enoma = 41 and Nearcinoma =
26) were treated and sampled a year later (17). None of the individuals showed signs
of recurrence, and yet none of the SCFAs exhibited a significant change with treatment
(all P> 0.058; Fig. 1B). For both the pretreatment cross-sectional data and the pre/
posttreatment data, we also failed to detect any significant differences in the relative
concentrations of any SCFAs (P > 0.16). Finally, we pooled the SCFA concentrations on
a total and per molecule carbon basis and again failed to observe any significant
differences (P > 0.077). Although some of the P values from our analyses were close to
0.05, the effect sizes were all relatively small and inconsistent given the disease
progression (Fig. 1). These results demonstrated that there were no significant associ-
ations between fecal SCFA concentration and diagnosis or treatment.

Combining SCFA and microbiome data does not improve the ability to diag-
nose individuals as having adenomas or carcinomas using a random forest model.
We previously found that binning 16S rRNA gene sequence data into operational taxo-
nomic units (OTUs) based on 97% similarity or into genera enabled us to classify individuals
as having adenomas or carcinomas using random forest machine learning models (8, 16).
We repeated that analysis but added the concentrations of the SCFAs as possible
features to train the models (see Fig. S1 in the supplemental material). Models trained
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FIG 1 SCFA concentrations did not vary meaningfully with diagnosis of colonic lesions or with treatment for adenomas or carcinomas. (A) The concentration
of fecal SCFAs from individuals with healthy (normal) colons (n = 172) or those with adenomas (n = 198) or carcinomas (n = 120). (B) A subset of individuals
diagnosed with adenomas (n = 41) or carcinomas (n = 26) who underwent treatment were resampled a year after the initial sampling; one extreme propionate
value (124.4 mmol/kg) was included in the adenoma analysis but not included in the visualization for clarity.

using SCFAs to classify individuals as having adenomas or carcinomas rather than
healthy colons had median areas under the receiver operator characteristic curve
(AUROC) that were significantly greater than 0.5 (P,genoma < 0.001 and P, cinoma <
0.001). However, the AUROC values to detect the presence of adenomas or carcinomas
were only 0.54 and 0.55, respectively, indicating that SCFAs had poor predictive power
on their own (Fig. 2A). When we trained the models with the SCFA concentrations and
OTU or genus-level relative abundances, the AUROC values were not significantly
different from the same models trained without the SCFA concentrations (P > 0.15;
Fig. 2A). These data demonstrate that knowledge of the SCFA profile from a subject’s
fecal sample did not improve the ability to diagnose a colonic lesion.

Knowledge of microbial community structure does not predict SCFA concen-
trations using a random forest model. We next asked whether the fecal community
structure was predictive of fecal SCFA concentrations, regardless of a person’s
diagnosis. We trained random forest regression models using 16S rRNA gene
sequence data binned into OTUs and genera to predict the concentrations of the
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FIG 2 SCFA concentrations do not improve models for diagnosing the presence of adenomas, carcinomas, or all lesions and cannot be reliably predicted from
16S rRNA gene or metagenomic sequence data. (A) The median AUROC for diagnosing individuals as having adenomas or carcinomas using SCFAs was slightly
better than than chance (depicted by the horizontal line at 0.50) but did not improve performance of the models generated using 16S rRNA gene sequence
data. (B) Regression models that were trained using 16S rRNA gene sequence, metagenomic, and PICRUSt data to predict the concentrations of SCFAs
performed poorly (all median R? values of <0.14). Regression models generated using 16S rRNA gene sequence and PICRUSt data included data from 490

samples, and those generated using metagenomic data included data from 78 samples.

SCFAs (Fig. S2). The largest R? between the observed SCFA concentrations and the
modeled concentrations was 0.14, which was observed when using genus data to
predict butyrate concentrations (Fig. 2B). We also used a smaller data set of shotgun
metagenomic sequencing data generated from a subset of our cohort (n,o,mar = 27,
Ngenoma = 25, and n = 26) (18). We binned genes extracted from the assembled
metagenomes into operational protein families (OPFs) or KEGG categories and trained
random forest regression models using metagenomic sequence data to predict the
concentrations of the SCFAs (Fig. S2). Similar to the analysis using 16S rRNA gene
sequence data, the metagenomic data were not predictive of SCFA concentration.
The largest R? was 0.055, which was observed when using KEGG data to predict
propionate concentrations (Fig. 2B). Because of the limited number of samples that we
were able to generate metagenomic sequence data from, we used our 16S rRNA gene
sequence data to impute metagenomes that were binned into metabolic pathways or
KEGG categories using PICRUSt (Fig. S2). SCFA concentrations could not be predicted
based on the imputed metagenomic data. The largest R? was 0.085, which was
observed when using KEGG data to predict propionate concentrations (Fig. 2B). The

cancer
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inability to model SCFA concentrations from microbiome data indicates that the
knowledge of the abundance of organisms and their genes was insufficient to predict
fecal SCFA concentrations.

Conclusion. Our data indicate that fecal SCFA concentrations are not associated
with the presence of adenomas or carcinomas and that they provide weak predictive
power to improve the ability to diagnose someone with one of these lesions. Further-
more, knowledge of the taxonomic and genetic structure of gut microbiota was not
meaningfully predictive of SCFA concentrations. These results complement existing
literature that suggest that fiber consumption and the production of SCFAs are unable
to prevent the risk of developing colonic tumors. It is important to note that our
analysis was based on characterizations of SCFA and microbiome profiles using fecal
samples at a single time point. Furthermore, observations along the mucosa near the
site of lesions may provide a stronger association. This may be a cautionary result to
temper enthusiasm for SCFAs as a biomarker of gut health more generally. Going
forward, it is critical to develop additional hypotheses for how the microbiome and host
interact to drive tumorigenesis so that we can better understand tumorigenesis and
identify biomarkers that will allow early detection of lesions.

Methods. (i) Study design and sampling. The overall study design and the
resulting sequence data have been previously described (16, 17). In brief, fecal samples
were obtained from 172 individuals with healthy colons, 198 individuals with colonic
adenomas, and 120 individuals with carcinomas. Of the individuals diagnosed as having
adenomas or carcinomas, a subset (N,4enoma= 41 and n =26) were sampled
after treatment of the lesion (median = 255 days between sampling, interquartile range
[IQR] = 233 to 334 days). Tumor diagnosis was made by colonoscopic examination and
histopathological review of the biopsy specimens (16). The University of Michigan
Institutional Review Board approved the studies that generated the samples, and
informed consent was obtained from all participants in accordance with the guidelines
set out by the Helsinki Declaration.

(ii) Measuring specific SCFAs. The measurement of acetate, propionate, isobu-
tyrate, and butyrate used a previously published protocol that used high-performance
liquid chromatography (HPLC) (19). Two changes were made to the protocol. First,
instead of using fecal samples suspended in DNA Genotek OmniGut tubes, we sus-
pended frozen fecal samples in 1 ml of phosphate-buffered saline (PBS). Second,
instead of using the average weight of fecal sample aliquots to normalize SCFA
concentrations, we used the actual weight of the fecal samples. These methodological
changes did not affect the range of concentrations of these SCFAs between the two
studies. The concentrations of isobutyrate were consistently at or below the limit of
detection and were not included in our analysis.

(iii) 16S rRNA gene sequence data analysis. Sequence data from Baxter et al. (16)
and Sze et al. (17) were obtained from the Sequence Read Archive (studies SRP062005
and SRP096978) and reprocessed using mothur v.1.42 (20). The original studies gen-
erated sequence data from the V4 region of the 16S rRNA gene using paired 250-
nucleotide (nt) reads on an lllumina MiSeq sequencer. The resulting sequence data
were assembled into contigs and screened to remove low-quality contigs and
chimeras. The curated sequences were then clustered into OTUs at a 97% similarity
threshold and assigned to the closest possible genus with an 80% confidence
threshold trained on the reference collection from the Ribosomal Database Project
(v.16). We used PICRUSt (v.2.1.0-b) with the recommended standard operating
protocol to generate imputed metagenomes based on the expected metabolic
pathways and KEGG categories (21).

(iv) Metagenomic DNA sequence analysis. A subset of the samples from the
samples described by Baxter et al. (16) were used to generate metagenomic sequence
data (N,ormal = 27, Nagenoma = 25, and N ncer = 26). These data were generated by
Hannigan et al. (18) and deposited into the Sequence Read Archive (study SRP108915).
Fecal DNA was subjected to shotgun sequencing on an lllumina HiSeq using 125-bp

carcinoma
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paired-end reads. The archived sequences were already quality filtered and aligned to
the human genome to remove contaminating sequence data. We downloaded the
sequences and assembled them into contigs using MEGAHIT (22), which were used to
identify open reading frames (ORFs) using Prodigal (23). We determined the abundance
of each ORF by mapping the raw reads back to the ORFs using Diamond (24). We
clustered the ORFs into operational protein families (OPFs) in which the clustered ORFs
were more than 40% identical to each other using mmseq2 (25). We also used mmseq2
to map the ORFs to the KEGG database and clustered the ORFs according to which
category the ORFs mapped.

(v) Random forest models. The classification models were built to predict lesion
type from microbiome information with or without SCFA concentrations. The regres-
sion models were built to predict the SCFA concentrations of acetate, butyrate, and
propionate from microbiome information. For classification and regression models, we
preprocessed the features by scaling them to vary between zero and one. Features with
no variance in the training set were removed from both the training and testing sets.
We randomly split the data into training and test sets so that the training set consisted
of 80% of the full data set, while the test set was composed of the remaining data. The
training set was used for hyperparameter selection and training the model and the test
set was used for evaluating prediction performance. For each model, the best perform-
ing hyperparameter, mtry, was selected in an internal five-fold cross-validation of the
training set with 100 randomizations. The mtry parameter represents the number of
features randomly sampled from the available features at a question point in the
classification tree (i.e., called splits of nodes) that, when answered, lead to the
greatest improvement in classification. Six values of mtry were tested, and the value
that provided the largest AUROC or R? was selected. We trained the random forest
model using the selected mtry value and predicted the held-out test set. The
data-split, hyperparameter selection, training, and testing steps were repeated 100
times to get a reliable and robust reading of model prediction performance. We
used AUROC and R? as the prediction performance metrics for classification and
regression models, respectively. We used the randomForest R package (version
4.6-14) as implemented in the caret R package (version 6.0-81) for developing and
testing our models.

(vi) Statistical analysis workflow. Data summaries, statistical analysis, and data
visualizations were performed using R (v.3.5.1) with the tidyverse package (v.1.2.1). To
assess differences in SCFA concentrations between individuals with healthy colons and
those with adenomas or carcinomas, we used the Kruskal-Wallis rank sum test. If a test
had a P value below 0.05, we then applied a pairwise Wilcoxon rank sum test with a
Benjamini-Hochberg correction for multiple comparisons. To assess differences in
SCFA concentrations between individual samples before and after treatment, we
used paired Wilcoxon rank sum tests to test for significance. To compare the
median AUCROC for the held-out data for the model generated using only the
SCFAs, we compared the distribution of the data to the expected median of 0.5
using the Wilcoxon rank sum test to test whether the model performed better than
would be achieved by randomly assigning the data to each diagnosis. When we
compared the random forest models generated without and with SCFA data
included, we used Wilcoxon rank sum tests to determine whether the models with
the SCFA data included did better.

(vii) Code availability. The code for all sequence curation and analysis steps,
including an Rmarkdown version of this article, is available at https://github.com/
SchlossLab/Sze_ SCFACRC_mBio_2019/.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.01454-19.

FIG S1, EPS file, 0.1 MB.

FIG S2, EPS file, 0.1 MB.
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