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ABSTRACT The “reproducibility crisis” in science affects microbiology as much as
any other area of inquiry, and microbiologists have long struggled to make their re-
search reproducible. We need to respect that ensuring that our methods and results
are sufficiently transparent is difficult. This difficulty is compounded in interdisciplin-
ary fields such as microbiome research. There are many reasons why a researcher is
unable to reproduce a previous result, and even if a result is reproducible, it
may not be correct. Furthermore, failures to reproduce previous results have
much to teach us about the scientific process and microbial life itself. This Perspec-
tive delineates a framework for identifying and overcoming threats to reproducibil-
ity, replicability, robustness, and generalizability of microbiome research. Instead
of seeing signs of a crisis in others’ work, we need to appreciate the technical and
social difficulties that limit reproducibility in the work of others as well as our own.
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On first blush, one might argue that any scientist should be able to reproduce
another scientist’s research with no friction. Yet, two anecdotes suffice to describe

why this is not the case. The first goes to the roots of microbiology, when Antonie van
Leeuwenhoek submitted a letter to the Royal Society in 1677, “Concerning little
animals” (1). This seminal work and several of his prior investigations described novel
observations of microorganisms, but the scientific community rejected his observations
for several reasons. First, because Leeuwenhoek had little interest in sharing his
methods with others, they could not be reproduced. Second, he wrote in “low Dutch,”
and his writing was translated to English and edited to half its original length. This likely
removed a significant amount of information regarding his methods. After several
failures, Robert Hooke refined his own compound microscope and was able to repro-
duce Leeuwenhoek’s observations. The precision of Hooke’s observations was hindered
by his use of a compound microscope, which had inferior optics to that of Leeuwen-
hoek’s single-lens microscope. In the process, Hooke popularized the compound
microscope. This succession of events is illustrative of many of the current problems
that microbiologists face in validating each other’s work. Time has proven that Leeu-
wenhoek’s work was rigorous, impactful, and robust. It was not sloppy, and there was
no fraud. But, it required multiple efforts by one of the greatest minds in science to
reproduce the results, and even then it was a poor reproduction of the original.

The second anecdote took place more recently. In 2011, Philip Bourne challenged
those attending the “Beyond the PDF” workshop (https://sites.google.com/site/
beyondthepdf/) to reproduce the analysis performed in his group’s 2010 study “The
Mycobacterium tuberculosis drugome and its polypharmacological implications” (2). The
response to that challenge resulted in a collaborative analysis involving the original
authors and scientists from Spain, China, and the United States that challenged
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concepts critical to understanding reproducible research (3). The reanalysis demon-
strated that the value of reproducibility, the degree to which research should be
reproducible, the amount of effort required to reproduce the research, and who should
be able to reproduce the research are questions without simple answers. Bourne’s track
record in science and as a leader in the field of bioinformatics suggests that his group
was not sloppy, and his challenge indicated a level of transparency that is rare in
science. Yet, the investigators who sought to reproduce the findings found that
someone with basic bioinformatics skills would require at least 160 h to decipher the
approaches used in the original analysis and an additional 120 h to implement them to
complete the reproduction.

Both of these anecdotes are at odds with the tone of a recent report by the
American Academy of Microbiology’s (AAM’s) 2015 colloquium “Promoting Responsible
Scientific Research” and its accompanying editorial in mBio (4, 5). The report is a useful
lens into how microbiologists view the reliability of research in their field. The collo-
quium identified “(i) sloppy science, (ii) selection and experimental bias, and (iii)
misconduct” as the primary contributors to the ongoing problems with ensuring the
reliability of microbiology research. Although the participants were quick to point out
that misconduct was a relatively minor contributor to the problem, the four case
studies that accompanied the original report all concern misconduct. Missing from
these reports was any of the nuance or humility enveloped in Leeuwenhoek’s case or
Bourne’s challenge: ensuring that one’s research design and methods are sufficiently
clear is enormously difficult. Researchers are frequently frustrated with their own lack
of documentation when they are contacted about a forgotten detail years after a paper
is published. Put simply, most problems with reproducibility are not due to sloppy
science, bias, or misconduct. I contend that many of the difficulties that we face in
ensuring the reproducibility of our research are social and driven by cultural forces
within science.

Although the issues identified by the AAM colloquium participants are important,
this Perspective argues that they are not the main reason for a reproducibility crisis in
microbiology. It is scientifically valuable to consider what other factors threaten our
ability to reproduce a result. Although these factors highlight the technical limitations
and cultural forces that we face, our inability to validate a result may also indicate that
we still have much to learn about biology. Furthermore, we must remember that
whether we can validate a result is not just a product of rigorous scientific practice but
also a product of stochastic forces (6, 7). We must also be on guard against assuming
that just because a result is reproducible that it is correct (8). With these general points
in mind, the goals of this Perspective are threefold. First, I present a framework for
thinking about how science is conducted within the microbial sciences. Second, I
provide an overview of various factors that threaten the field’s ability to validate prior
results and the tools that we can use to overcome these problems. Third, based on
these issues, I provide five exercises that research groups can use to motivate important
discussions of their practices and how their practices foster or impede efforts to
validate the researchers’ results. Although I will primarily focus on examples from
microbiome research, the principles are generalizable to other areas of microbiology, as
all scientists struggle to ensure the reproducibility of their research.

THREATS TO REPRODUCIBILITY
Developing a framework. One of the struggles in discussing reproducibility,

replicability, and the factors that can limit them is agreeing upon how they should be
defined (7). Reproducibility is used as a vague term for being able to repeat another
researcher’s work whether that is with the same protocols or with the same popula-
tions. This Perspective will use definitions that have greater precision and that are
based on definitions that are widely used in the statistics literature. Reproducibility is
the ability to regenerate a result with the same data set and data analysis workflow, and
replicability is the ability to produce a consistent result with an independent experi-
ment asking the same scientific question (8). I propose a similar framework that
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accounts for the practice of applying multiple methods to the same samples to improve
the robustness and generalizability of a result (Table 1) (9). It is critical for scientists to
give attention to the right-hand column of the framework. Most research is exploratory,
and scientists, editors, and funding agencies generally lack the will or ability to confirm
previous studies via independent replications or attempts to generalize results in other
model systems or human populations (4, 5, 7, 10, 71). Results must be reproducible and
robust, but they also need to be replicable and generalizable.

An example. The question of whether there are microbiome-based signatures of
obesity is a useful illustration to demonstrate the factors that affect each of the
quadrants of the grid in Table 1, and it can be used to underscore the difficulty of
ensuring the reproducibility, replicability, robustness, and generalizability of results.
Several research groups, including mine (11), have attempted to validate the result that
obese individuals were more likely to have lower bacterial diversity and relative
abundances of Bacteroidetes (12, 13). The original observation was published in 2008
using 16S rRNA gene sequence data and continues to engender much enthusiasm for
the role of the microbiome in human health (14). It is important to note that the original
study was one of the first to use high-throughput amplicon sequencing, and so there
was minimal infrastructure to deposit and store such sequences in public databases.
Furthermore, many of the software tools that we now rely on for facilitating reproduc-
ible workflows were not available. Regardless, although the original study was per-
formed using poorly described data curation methods, we were able to independently
obtain the same results as the original study when using the same data set. The original
result can thus be considered reproducible (Table 1). However, when we used the same
methods with data from nine other cohorts, we and others have failed to replicate the
result (11–13). These failures to replicate the original result may be due to method-
ological differences across the replicating studies, differences in study populations, or
statistical variation. Our study demonstrated that each of 10 cohorts was significantly
underpowered to identify a 10% difference in Shannon diversity (11). Therefore, the
lack of statistical power may have been responsible for an inability to detect a
difference. Each of these studies was rather large for the time that it was published
within the development of the microbiome research field, and so the original research-
ers likely thought that they had obtained the best statistical power that was feasible.
Identifying what is a biologically meaningful difference in any parameter within the
microbiome literature to complete a meaningful power analysis has been a challenge.
Each of these factors still makes it nearly impossible to perform a meaningful a priori
power analysis to aid in the design of any cohort. Next, it is worth noting that those
involved in the original study pursued multiple approaches to better understand the
question of whether the microbiota is important in obesity. They initially sought
microbiome-based signatures using mouse models (15). They observed stark differ-
ences in the microbiota of genetically lean and obese mice and found that the
microbiota of obese mice could transmit the propensity to gain weight to germfree
mice (15). In a human cohort, they generated multiple data sets that each reflected
different regions of the 16S rRNA gene. In obese individuals, they observed lower
diversity and relative abundance of Bacteroidetes (14). They also used shotgun metag-
enomic sequencing to postulate the enrichment of carbohydrate processing genes in
obese individuals (14). In a smaller cohort study, although the subjects’ diversity
remained constant, as the authors predicted, the relative abundance of Bacteroidetes

TABLE 1 Simple grid-based system for defining concepts that can be used to describe
the validity of a resulta

Methods Same experimental system Different experimental system

Same methods Reproducibility Replicability
Different methods Robustness Generalizability
aThis is a generalization of the approach used by Whitaker (9), who used it to describe computational
analyses.
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increased as the subjects lost weight (16). Although each part of their approach had
significant weaknesses, including methodological biases and underpowered experi-
mental designs, their results supported the hypothesis that there are microbial signa-
tures associated with obesity. This conclusion was robust within the cohort that they
studied, but it was not generalizable to other cohorts. Within this example, it is
apparent that scientists acted in good faith given the technological and cultural
conditions that they were working under. These conditions underscore the difficulty of
replicating and generalizing results.

Reproducibility. Threats to reproducibility are some of the most fundamental and
easiest in which to lay fault on the original investigators. If a result cannot be
reproduced, then it is difficult to have confidence that it can be replicated or gener-
alized. Thus, the ability to reproduce a result is critical.

Too often, the underlying raw sequencing data and associated data that contextu-
alize the sequencing data are not accessible. Clearly, this makes reproducing a prior
analysis impossible (17, 18). Well-established databases for storing a variety of “omics”
data exist, and other data should be archived in third-party databases such as figshare
(https://figshare.com) and Dryad (https://datadryad.org). However, some researchers
still fail to post their sequencing data to public databases or do not provide the
necessary metadata with the sequencing data. As we developed the obesity meta-
analysis, we were dependent on the original authors to provide the information for two
of the 10 data sets. Furthermore, the data made available from the original study
provided only the subjects’ body mass indexes (BMIs) as categories (14). We were
unable to access the actual heights, weights, and BMIs. We did not include three large
data sets from two studies because their data were inaccessible due to onerous data
sharing agreements (19, 20). Two other data sets required at least a month of effort to
obtain (21, 22). More broadly, Stodden et al. (23) recently showed that although Science
magazine has had clear guidelines requiring authors to make the data and code for
their studies available, only 44% of the authors who published papers in 2011 and 2012
were willing to provide the resources. Lack of access to the data and underlying code
for an analysis clearly limits the ability of others to reproduce and build upon that
analysis.

“Link rot”—the fact that web or e-mail addresses become deprecated—is a signif-
icant problem for those attempting to access the data and methods needed to
reproduce a result (24). Changes in institutional affiliation frequently render e-mail
addresses invalid. ORCID (https://orcid.org) has emerged as a technology to solve the
e-mail rot problem, and many journals use it to provide a persistent link to an
individual’s many scientific identities over their career. The fraction of manuscripts
including web resources continues to grow, and yet at least 70% of those manuscripts
include URLs that are inaccessible (24). To prevent link rot, services like Zotero (https://
www.zotero.org) can provide a digital object identifier (DOI) that persists even if the
link that it points to changes. Unfortunately, the developer of the web resources must
ensure that the resource remains active. The inevitability of link rot further emphasizes
the importance of using public and stable servers that are likely to persist.

Related to link rot, rapid advances in sequencing technology, data curation, data-
bases, and statistical techniques present an additional threat to reproducibility because
resources and what are considered best practices are constantly evolving. This evolu-
tion is not always well documented. For example, the mothur software package has had
40 major updates since it was originally released in 2009 (25). The RDP (26) (http://rdp
.cme.msu.edu) and SILVA (27) (https://www.arb-silva.de) databases that many use as a
reference for aligning and classifying 16S rRNA gene sequences are updated annually,
and the popular Greengenes database files have not been updated since 2013 (28)
(http://greengenes.lbl.gov and http://greengenes.secondgenome.com). With each re-
lease, curators expand the number of sequences in the database and make modifica-
tions to their taxonomic outline. For software and databases, it is critical that authors
report version numbers if there is to be any hope of replicating previous work.
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Unfortunately, the reliance on web-based resources and workflows at sites such as
GenBank (https://www.ncbi.nlm.nih.gov/genbank), Greengenes, RDP, and SILVA pre-
cludes analyzing new data with older versions of the sites. The Greengenes website
removed their online tools in April 2017, exemplifying the problem with web-based
workflows. Their database files are now available through the company Second Ge-
nome, but their tools are not. Combined with the development of new sequencing
platforms and deprecation of old platforms, these changes in technology, references,
and software underscore the importance of adequately documenting workflows and
enabling users to recreate the conditions that the original researchers worked under.

Because many journals impose word limits on manuscripts, Materials and Methods
sections become a chain of citations to previous works that each cite previous work
(10). Improved documentation in supplementary materials or archives such as proto-
cols.io (https://www.protocols.io) for lab-based methods or through GitHub (https://
github.com) for data analysis workflows would make it easier for researchers to avoid
these rabbit holes. For data analysis workflows, software such as GNU Make (https://
www.gnu.org/software/make/) and the Common Workflow Language (29) make it
possible to track data dependencies and automate a workflow. For example, we used
GNU Make to write a workflow in our meta-analysis of the obesity data such that
downloading a copy of the scripts from the project’s GitHub repository and writing
“make write.paper” in the command line will reproduce our analysis. Although consid-
erable effort is required to make them work, workflow tools make it possible to trace
the provenance of a summary statistic from the manuscript back to the raw data.

The use of workflow tools, literate programming tools (e.g., RMarkdown [30] and
Jupyter [31]), and version control software provides researchers with mechanisms to
track the development of their analyses. Furthermore, these tools can help researchers
reflect the fact that their analysis was not a linear process resembling a pipeline. In
reality, questions change and scientists can fall into the traps of the “Garden of Many
Forking Paths,” where they go looking for a desired result (32), or “P-hacking,” where
large numbers of statistical hypothesis tests are attempted without adequately cor-
recting for performing multiple tests (33). Although it is possible to preregister data
analysis plans (34–36), these plans are often too stringent for most exploratory research.
An increasing number of microbiome researchers are using workflow, literate program-
ming, and version control tools to document their analyses. I have yet to observe
widespread exploration of the history of projects’ repositories or the adoption of
preregistration of data analysis plans among microbiome researchers. Although these
have their technical and cultural limitations, they offer greater transparency to im-
proved reproducibility.

Replicability. A number of threats similar to those for reproducibility could explain
why a previous result cannot be replicated. In addition to those detailed previously,
there are threats related to differences in systems or populations and the ability to
control for those differences.

Forgotten in discussions of replication failures by many microbiologists is that a
replication may fail because replication is statistical rather than deterministic (6). Every
experiment has a margin of error, and when the effect size is near that margin of error,
it is likely that a statistically significant result in one replicate will not be significant in
another. Most researchers use a frequentist null model hypothesis testing approach
with which they are willing to accept a type I error of 0.05. Stated more colloquially,
they are willing to incorrectly reject a null hypothesis in 5% of the replicates. Further,
they rarely quantify the risk of falsely accepting a null hypothesis (i.e., type II errors) (37).
In some cases, an insufficient sample size in the replicate study may explain the failure
to replicate a study. In other cases, the original study may have been underpowered,
rendering it susceptible to an inflated risk of type I errors (38). Solutions to these
problems include preregistering data analysis plans (34–36), justifying sample sizes
based on power calculations (10, 11, 37), and using Bayesian frameworks that allow
prior knowledge of the system to influence the interpretation of new results (39, 40). It
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needs to be underscored, however, that to measure statistical power and use that
information to inform sample size selections, one must know what a biologically
relevant difference is. The microbiome field has yet to make that determination. Our
previous power analysis used various differences in Shannon diversity (11). As we
indicated, those levels were picked because they seemed reasonable, not because of a
biological foundation. Furthermore, there was no reason to think that diversity metrics
are the most biologically meaningful parameters to base the calculations on.

Beyond problems of sample size and statistical power calculations, problems with
experimental design are also often a threat to replicability because investigators fail to
account for confounding variables in the original study. A subsequent study may fail to
find the same result because its design is not impacted by the confounding variable. In
sequence-based analyses, threats to replicability are encountered when samples are
not randomized across sequencing runs. These so-called batch effects have been a
problem with a large number of analytic techniques beyond sequencing (41). One
notable example occurred within the Human Microbiome Project where 150 people
were recruited in Houston, TX, and 150 were recruited in St. Louis, MO (21). Researchers
at the Baylor College of Medicine and Washington University performed the DNA
extractions for the two sets of subjects, respectively. Researchers at the Baylor College
of Medicine, the J. Craig Venter Institute, and the Broad Institute sequenced the DNA
from the Houston subjects, and researchers from Washington University sequenced the
DNA from the St. Louis subjects. The subject’s city was the variable with the largest
effect size, although all parties used the same standard operating procedures to sample
the subjects and extract and sequence the DNA (21, 42). Because the city of origin and
the center that did the extractions were perfectly confounded, it was impossible to
quantify the impact of geographic differences on the microbiome. Instead of being a
single study that intended to address associations between geographic and micro-
biome variation, this became two replicate studies that were unable to address the
influence that geography has on the microbiome. It is easy to blame those who
designed the study for this confounding, but it is important to acknowledge the social
conditions that were resolved via negotiations that may have impacted the design and
the need to garner buy-in from different centers.

In addition to variation between human cohorts, variation between bacterial and
model organism strains can hinder efforts to replicate results. In microbiome research,
it is widely appreciated that the microbiota of research animals from the same litter and
breeding facility are largely clonal and distinct from those in other facilities (43, 44).
Mice from two breeding facilities at the same institution may have completely different
microbiota. The best example of this phenomenon is the presence of segmented
filamentous bacteria in mice purchased from Taconic Farms but not Jackson Labora-
tories (45, 46). Thus, the origin of the mice and not the experimental treatment may
explain the roles ascribed to the microbiota. This is particularly a problem for genetic
models when researchers obtain mutant animals and animals with the wild-type
background as their control. In such cases, using the offspring of heterozygous matings
is critical (47). Similarly, comparing the microbiota of obese and lean individuals from
a cohort of twins and their mothers in Missouri (14) may have confounding factors that
differ from members of Amish communities (22). In these cases, the problem with
replicability is due not to the quality of the investigator’s experimental practices but to
the differences that may be biological, demographic, or anthropological. Thus, failure
to replicate a study across different strains or cohorts could suggest that other
interesting factors play a role in the phenomenon under study.

Just as uncertainty over the variation in mouse and human populations can impact
the replicability of results, uncertain provenance and purity of reagents, organisms, and
samples can also threaten replicability. Perhaps the best-known example is the discov-
ery that HeLa cells contaminate many other cell lines, especially those in the same
laboratory (48, 49). Similarly, investigators frequently realize that they are working with
bacterial strains that were incorrectly typed or that have evolved during serial passages
from the freezer stock (50, 51). Short of resequencing the cells, experimental controls,
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limiting the number of passages from freezer stocks, and periodic phenotyping of the
strains can help to overcome these problems. However, it is part of our scientific culture
that if a colleague sends a strain to another researcher, the recipient generally trusts
that they get the correct strain. There is also a growing awareness that DNA extraction
kits can be contaminated with low levels of bacterial DNA (52). These contaminants
have led to the identification of contaminants as being important members of the lung
and placental microbiota when mock extractions are not sequenced in parallel (53–55).
For each of these threats to replication, we would be well served by following the
proverb to “trust, but verify” by testing the robustness of the results.

Robustness. Every method has its own strengths and weaknesses. Therefore, it is
important to address a research question from multiple and hopefully orthogonal
directions. This strategy combines the strengths of different methods to overcome their
individual weaknesses (56). Evaluating the robustness of a result from a single cohort
is becoming more common as researchers pursue multiple approaches, including 16S
rRNA gene sequencing, metagenomics, metatranscriptomics, and metabolomics (57–
59). Of course, biases in the underlying cohort design, sample collection and storage,
or the nucleic acid processing will propagate through the analyses. The way to remedy
this is to select methods that are as independent from each other as possible. For
example, data collected from multiple regions of the 16S rRNA gene would not be
considered truly independent data sets since amplicon sequencing would have been
applied to the same samples. The results would be marginally more independent if one
were to layer shotgun metagenomic data onto the 16S rRNA gene sequence data,
because although the same DNA would be used for sequencing, metagenomics
provides information about the genetic diversity and functional potential of a commu-
nity rather than the taxonomic diversity of a community. Metabolomic data would be
even more independent from the DNA-based methods since they require completely
different sample processing steps. Quantitative PCR, cultivation, and microscopy could
be similarly layered on these data. Ultimately, it is impossible for the results of each set
of methods to be fully independent. If the underlying design of the study is flawed by
insufficient statistical power or failure to account for confounding variables, then any
attempts to test the robustness of a result will also be flawed.

Generalizability. A motivating goal in science is to have a result that is generaliz-
able across populations or systems. Within a scientific culture that does not place value
on publishing negative results, it is difficult to assess whether scientists’ bias to support
their prior results affects the ability to claim that a result is robust or generalizable.
Similarly, failing to attempt replication studies hinders the ability of researchers to test
the generalizability of most results. Scientists often fear being “scooped” (60). In reality,
it is the second researcher who examines the same question who has the opportunity
to increase the field’s confidence that a result is valid (61). Generalizability is an
important and broad question. Model organisms (e.g., Escherichia coli) and strains of
those organisms (e.g., K-12) have taught us a great deal about the biology of those
organisms. However, it is not always trivial to generalize that knowledge to related
species and strains or from in vitro to in vivo conditions and on to human subjects (62,
63). Like a failure to reproduce, replicate, or demonstrate the robustness of a result, a
failure to generalize a result is not a failure of science. Rather, it is an opportunity to
better understand the complex biology of bacteria and how they interact with their
environments.

FOSTERING A CULTURE OF GREATER REPRODUCIBILITY AND REPLICABILITY
Training. Throughout my discussion of the threats to reproducibility, replicability,

robustness, and generalizability, failures on the part of scientists to be more transpar-
ent, provide greater documentation, or design better experiments have been balanced
by an appreciation that we work within a scientific culture. This culture is limited by our
ignorance of biology, rapid expansion in technology, misaligned rewards, and a lack of
necessary training. A key observation from the work of Garijo and colleagues (3) was
that the level of detail needed to reproduce an analysis varies depending on the
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researcher’s level of training. An expert in the field understands the nuances and
standards of the field, whereas a novice may not know how to install the software. This
highlights the need for training. Yet, many microbiology training programs focus on
laboratory skills while ignoring data analysis skills. A number of excellent “best prac-
tices” documents have emerged in recent years (64–69). In addition, organizations,
including Software Carpentry and Data Carpentry, offer workshops to introduce re-
searchers to the best practices in reproducible research (70) (https://carpentries.org).
Massively open online courses have been developed that teach scientists best practices
for performing reproducible analyses. The most popular of these is a training program
from faculty at the Johns Hopkins Data Science Lab (http://jhudatascience.org). Just as
important as learning the fundamentals of how to implement reproducible research
methods is honing those skills in one’s research. A novice could not reproduce
Beethoven’s “Für Elise” from sheet music without prior experience playing the piano.
Similarly, novices cannot expect to reproduce a result without learning the methods of
their discipline. With this analogy in mind, I have created the Riffomonas project, which
expounds on the threats to reproducibility and tools that microbiome researchers can
use to maximize the computational reproducibility of their analyses (http://www
.riffomonas.org). The Riffomonas materials use microbiome-related examples to illus-
trate the importance of transparency, documentation, automated workflows, version
control, and literate programming to improving the computational reproducibility of an
analysis. The goal is that once scientists have been trained in these practices, they can
apply them to their own work and use them to “riff” or adapt and build on the work
of others.

Exercises. The following exercises are meant to motivate conversations within a
research group to foster a culture improving reproducibility and replicability and to
underscore the threats outlined above.

1. Working away from each other, have two or more people write instructions on
how to fold a paper airplane. Have the participants trade instructions, separate,
and implement the instructions. After the participants come back together, ask
the following questions. How closely did the final airplanes resemble that of the
person who developed the instructions? What would have helped to make the
reproductions more faithful? How much did the author of the instructions
assume about the other person’s prior knowledge of paper airplanes, resources,
and abilities? What challenges would length limitations place on this exercise?
How does this exercise resemble the descriptions in the Materials and Methods
section of papers for standard methods (e.g., PCR) and for novel methods (e.g.,
bioinformatic workflows)?

2. Imagine that a graduate student is really excited about an analysis that you
performed in your most recent paper and would like to replicate the analysis
with their own data. But first, they want to make sure that they reproduce your
results. What steps are likely to cause the student problems? If it is not clear to
you what problems they might face, find your favorite figure from a paper by a
different research group than your own. Can you reproduce the figure? What is
standing in your way?

3. Take a figure from your recent paper and improve the likelihood that another
researcher would be able to reproduce it. Where are the data, and how would
the researcher access them? What calculations were performed to summarize the
data? What software was used to generate the figure? Is that software freely
available? What steps would the researcher need to take to generate the figure?
When you write your methods, what experience level are you writing for? Whom
should you be writing for? When you are confident that you have made the
figure as reproducible as you can, give the instructions to several colleagues and
ask for their feedback.

4. Complete an audit of the reproducibility practices in your research group. Table 2
provides a rubric that someone working within the host-associated microbiome
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field might use to assess their research. Within your research group, modify this
rubric to suit your needs. For your next paper, work to improve one element from
the rubric and constantly be developing an ethic of fostering greater reproduc-
ibility.

5. Many of the threats to reproducibility and replicability are a product of scientific
culture: methods sections are terse or vague, original data are not available,
analyses rely on expensive and proprietary software, analysis scripts are available
“upon request from the authors,” and papers are published behind paywalls.
Some might give into despair thinking that one person or research group can
have only a minor impact. Have a discussion within your group about why things
are this way, whether your group’s practices should change, and what would be
the easiest and most impactful thing to change.

CONCLUSION

A motivating concept that has been attributed to many people to improve the
reproducibility of one’s research is that they should think of themselves from a month
ago as their most important collaborator. They are not available to answer questions to
things that they have forgotten in the intervening period. This is a common occurrence
for many researchers who put projects to the side for a time to prepare for examina-
tions, go on vacations, or work on other projects. Trying to piece together what they
did previously is often a frustrating process. If instead they had been using tools to
improve reproducibility, then they will be doing themselves a favor when they return
to the project. Similarly, I consider their supervisor or coauthors to be their second most
important collaborators. It is likely that the corresponding author was not the person
who implemented the details of the analysis plan. Thus, it is important that they have
access and the ability to navigate the project when they receive a query about how the
analysis was done. Anyone who has done research can attest to how difficult it can be
to satisfy these two sets of “collaborators.” And yet, if we can satisfy these collaborators,
then we should be able to satisfy the third collaborator, the reader who hopes to build
upon our work to generalize it or go in a new direction.

It is important to see that attempts to guard against threats to reproducibility,
replicability, robustness, and generalizability are positive forces that will improve
science. They have been considered a form of scientific “preventative medicine” (8).
Although guarding against these threats is not a guarantee that the correct conclusion
will be reached, the likelihood that the result is correct will be increased. Beyond
ensuring “correctness,” the goal of these efforts, and I would argue their primary goal,
should be to enable future scientists to build upon the work to go further. Before
attributing difficulties with reproducibility, replicability, robustness, and generalizability
to a dim view of our fellow scientists as being sloppy, biased, or untrustworthy, it is
worth seriously considering the many factors— biological, statistical, and sociological—
that pose a threat. Although there is much room for improvement, we must acknowl-
edge that science is a process of learning and that it is really freaking hard.
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