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ABSTRACT Antibiotic usage is the most commonly cited risk factor for hospital-acquired Clostridium difficile infections (CDI).
The increased risk is due to disruption of the indigenous microbiome and a subsequent decrease in colonization resistance by
the perturbed bacterial community; however, the specific changes in the microbiome that lead to increased risk are poorly un-
derstood. We developed statistical models that incorporated microbiome data with clinical and demographic data to better un-
derstand why individuals develop CDI. The 16S rRNA genes were sequenced from the feces of 338 individuals, including cases,
diarrheal controls, and nondiarrheal controls. We modeled CDI and diarrheal status using multiple clinical variables, including
age, antibiotic use, antacid use, and other known risk factors using logit regression. This base model was compared to models
that incorporated microbiome data, using diversity metrics, community types, or specific bacterial populations, to identify char-
acteristics of the microbiome associated with CDI susceptibility or resistance. The addition of microbiome data significantly
improved our ability to distinguish CDI status when comparing cases or diarrheal controls to nondiarrheal controls. However,
only when we assigned samples to community types was it possible to differentiate cases from diarrheal controls. Several bacte-
rial species within the Ruminococcaceae, Lachnospiraceae, Bacteroides, and Porphyromonadaceae were largely absent in cases
and highly associated with nondiarrheal controls. The improved discriminatory ability of our microbiome-based models con-
firms the theory that factors affecting the microbiome influence CDI.

IMPORTANCE The gut microbiome, composed of the trillions of bacteria residing in the gastrointestinal tract, is responsible for
a number of critical functions within the host. These include digestion, immune system stimulation, and colonization resistance.
The microbiome’s role in colonization resistance, which is the ability to prevent and limit pathogen colonization and growth, is
key for protection against Clostridium difficile infections. However, the bacteria that are important for colonization resistance
have not yet been elucidated. Using statistical modeling techniques and different representations of the microbiome, we demon-
strated that several community types and the loss of several bacterial populations, including Bacteroides, Lachnospiraceae, and
Ruminococcaceae, are associated with CDI. Our results emphasize the importance of considering the microbiome in mediating
colonization resistance and may also direct the design of future multispecies probiotic therapies.
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Since the discovery of penicillin in 1928, antibiotics have revo-
lutionized health care, saving patients from life-threatening

infections, such as bacteremia, bacterial meningitis, tuberculosis,
and pneumonia. It has recently been estimated that over 250 mil-
lion courses of antibiotics are prescribed to outpatients in the
United States annually (1). However, besides eradicating the
pathogen of interest, antibiotics disturb members of the indige-
nous bacterial community of the gastrointestinal tract, i.e., the gut
microbiome. In hospitals, this disruption may result in Clostrid-
ium difficile infection (CDI), the leading nosocomial infectious

disease in the United States. Cases of CDI have more than doubled
since 2001, with over 300,000 new diagnoses in 2009 (2).

An intact microbiome is crucial for its role in providing resis-
tance to C. difficile colonization. Antibiotic use, proton pump in-
hibitors, and advancing age, which are all known to influence the
composition of the gut microbiome, are all risk factors for CDI
(3–8). However, no one has developed a set of microbiome-based
biomarkers for CDI to complement these risk factors. Therefore,
characterizing the differences in the microbiomes of individuals
with and without CDI is essential for understanding the changes
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within the microbiome associated with CDI. This knowledge
would also potentially lead to novel targeted therapies, as the typ-
ical treatments of metronidazole and vancomycin feed the cycle of
disrupting the gut microbiome. For the estimated 25% of cases of
CDI-characterized recurrent infection, the most effective treat-
ment has been fecal microbial transplant (FMT), which has a 92%
success rate in limiting further recurrence (9). The remarkable
success of FMT, which restores the normal microbiome, under-
scores the importance of understanding the role of the micro-
biome in providing colonization resistance.

Current microbiome-related studies use three general meth-
ods to characterize differences in the microbiomes between
groups of individuals. First, the microbial community composi-
tion of an individual can be distilled into a single parameter (i.e.,
alpha diversity) to describe the community in terms of richness or
diversity. For instance, it has been shown that individuals with
diarrhea tend to have a less diverse community composition than
healthy individuals (10, 11). Unfortunately, such results do not
lend themselves to subsequent mechanistic investigations and do
not provide a therapeutic avenue, since it is difficult to predict
whether an antibiotic will increase or decrease an individual’s di-
versity. Second, cross-community comparisons (i.e., beta diver-
sity) have been made to relate the similarity of microbial commu-
nities between individuals (e.g., the UniFrac method and Bray-
Curtis index). In humans, these metrics are useful in tracking an
individual’s recovery from antibiotic therapy (6); however, they
have had limited use in discriminating between treatment groups
(see, e.g., reference 12). Using beta diversity metrics, it is again
difficult to develop a mechanistic understanding of the relation-
ship between the community structure and disease or to provide a
therapeutic avenue to change a community structure. Finally, in
an approach similar to that of genome-wide association studies,
comparisons of the relative abundances of individual bacterial
populations can be made between groups of individuals (10, 13).
This approach does not account for the possibility that mixtures of
populations can be protective or causative or that different mix-
tures can have the same phenotype in different individuals. Here
we propose a comprehensive modeling approach that incorpo-
rates clinical metadata to identify collections of bacteria that can
be associated with health and disease. A similar approach was
recently used to model the microbiome to identify microbiome
signatures of psoriasis; however, clinical data for the subjects was
not included (14).

To better understand how clinical and microbiome-based fac-
tors are associated with CDI, we characterized the gut micro-
biomes of hospitalized individuals with and without CDI who
developed diarrhea and of healthy individuals from the broader
community. We used clinical and microbiome data to generate
models of CDI status in order to differentiate between the three
groups of subjects. Addition of microbiome data to clinically
based models for CDI significantly improved the ability to differ-
entiate these patient groups. Using these models as tools, we iden-
tified bacteria with potential roles in the resistance to C. difficile
colonization, while controlling for clinically relevant risk factors.

RESULTS
Patient sampling and base model framework. Fecal samples were
collected from 338 individuals. Within this collection, 183 diar-
rheal stool samples were acquired from inpatients at the Univer-
sity of Michigan Hospital, including subjects both with CDI (n �

94) and without CDI (n � 89). These samples were tested as pos-
itive or negative for C. difficile by the clinical microbiology lab at
the hospital and subsequently confirmed through PCR using
C. difficile-specific 16S rRNA primers (see Materials and Meth-
ods). The remaining 155 nondiarrheal control stool samples were
collected from individuals in the surrounding community. We
collected a broad set of clinical data, including risk factors for
development of CDI from the subjects’ questionnaire responses
and their medical records (Table 1). As expected, antibiotic usage
was more prevalent in CDI cases than in individuals in either of
the control groups (P � 0.001). Fluoroquinolones represented the
most-used at-risk antibiotics in hospitalized patients, followed by
amoxicillin and cephalosporins. Interestingly, individuals that
were CDI positive were more likely to have lived with a health care
worker. Together, these clinical data represented the framework
for our base model.

We used age, gender, race, antibiotic use, antacid use, a vege-
tarian diet, surgery within the past 6 months, a history of CDI,
residence with another person who had CDI, and residence with
another person who works in a health care setting as explanatory
variables for three logit models. For each model, we evaluated the
ability of these variables to discriminate a group’s classification
using the area under the receiver operator characteristic (ROC)
curve (AUC) (15). These curves look at the true-positivity rate,
i.e., sensitivity, as it relates to the false-positivity rate, i.e., 1 minus
the specificity. Using the full collection of explanatory variables,
we were interested in three comparisons. The first comparison
differentiated between the cases and the nondiarrheal controls
(AUC � 0.891). The second differentiated between the cases and
diarrheal controls (AUC � 0.659). The third differentiated be-
tween the diarrheal and nondiarrheal controls (AUC � 0.849).
The base model for cases and diarrheal controls was the only com-
parison that was not significantly different than an empty model
(i.e., a model without independent variables; P � 0.189). The
AUC and 95% confidence intervals for all models are listed in
Table S1 in the supplemental material. These three models served
as the base for our development of other logit models that incor-
porated microbiome-based data.

Incorporation of diversity measures into logit models. We
first looked at the overall microbiome structural differences
among the individuals in our study (see Fig. S1 in the supplemen-
tal material). There were apparent structural differences between
nondiarrheal control samples and hospital-acquired samples
(cases and diarrheal controls). These differences were statistically
significant by analysis of molecular variance (AMOVA) (P �
0.001). The structures of cases and diarrheal controls were addi-
tionally significantly different from one another by AMOVA (P �
0.02), although to a lesser degree. In order to identify the differ-
ences between these experimental groups, we first looked at their
levels of overall bacterial diversity. Previous studies have shown
that the bacterial diversity of subjects with initial and recurrent
CDI is markedly lower than that of healthy subjects (10, 11). Mea-
suring diversity using the inverse Simpson index, we found that
hospital-acquired samples had a 2-fold-lower diversity than those
of the nondiarrheal controls but were not significantly different
from each other (Fig. 1A). A model based on the inverse Simpson
index alone significantly differentiated nondiarrheal controls
from either cases or diarrheal controls (Fig. 1B to D), although this
model performed no better than the base model alone. When we
incorporated the inverse Simpson index into our base models,
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differentiation of cases from nondiarrheal controls was signifi-
cantly improved (AUC � 0.922, P � 0.0072), and differentiation
of diarrheal controls from nondiarrheal controls was also signifi-
cantly improved (AUC � 0.900, P � 0.0009). Cases and diarrheal
controls were indistinguishable when we used models that incor-
porated the inverse Simpson index. We performed the same anal-
ysis using the Shannon diversity index and observed similar re-
sults. These results indicate that although low diversity was a
characteristic of CDI-positive subjects, subjects with diarrhea had
lower diversity than healthy outpatients.

Incorporation of bacterial community types into logit mod-
els. Next, we sought to determine whether a subject’s overall com-
munity composition differentiated CDI status from diarrheal sta-
tus. We assigned the samples to a specified number of clusters (k �
2 to 15) based on their similarity to other samples after removing
the C. difficile operational taxonomic unit, 19 (OTU 19). We se-
lected 13 as the appropriate number of clusters (i.e., community
types), as this resulted in the optimal AUC for the base model
when we incorporated the subject’s community type. These com-
munity types varied in CDI prevalence among individuals within
each type (Fig. 2A, percent of case subjects). Results from models
using community types alone were similar to results from the base
models (Fig. 2B to D). When the community type assignments
were added to the base models, the AUCs significantly improved
relative to those of the base models in all comparisons (Table S1).
These results indicate that specific community types differentiated

CDI status and suggest that certain community types may be more
susceptible to colonization by C. difficile.

To determine the taxonomic composition of each of these
community types, we used the randomForest feature selection
algorithm to identify those taxa that were indicators for the differ-
ent community types (Fig. 2A). There were 6 community types
that were less prevalent among case individuals or diarrheal con-
trols than among nondiarrheal controls (i.e., types 12, 3, 9, 7, 13,
and 11). These 6 types had higher relative abundances of OTUs
belonging to the Bacteroides genus (OTUs 3, 4, 5, and 8), Alistipes
genus (OTU 6), Prevotella genus (OTU 17), and the Ruminococ-
caceae (OTU 7) than the other community types, while the re-
maining 7 types (i.e., 1, 8, 10, 4, 6, 5, and 2) were enriched in
Enterobacteriaceae (OTU 1), Enterococcus species (OTU 2), Blau-
tia species (OTU 11), and Lachnospiraceae (OTU 13). There were
6 community types that were less prevalent among case individu-
als than among the diarrheal controls (i.e., types 6, 5, 2, 9, 7, and
11). These types could be further subdivided by the overall per-
centage of diarrheal controls within each type. Types 6, 5, and 2
had a high percentage of diarrheal controls, while types 9, 7, and
11 had a low percentage of diarrheal controls (Table S2). Types 6,
5, and 2 were also low in nondiarrheal controls and lacked several
OTUs found primarily in that group (Fig. 2A). Furthermore, type
2 or 6 was highly enriched in either Enterococcus species or Enter-
obacteriaceae, respectively. Types 9, 7, and 11 also were found in a
high proportion of nondiarrheal controls and were more abun-

TABLE 1 Demographic information for subjects in each experimental group

Characteristic

Value for:

P valueCases (n � 94)
Diarrheal controls
(n � 89)

Nondiarrheal controls
(n � 155)

Sex, n (%)
Females 53 (56.4) 49 (55.1) 102 (65.8)
Males 41 (43.6) 40 (44.9) 53 (34.2) 0.166

Age (yr)
Mean (SD) 55.9 (18.3) 58.7 (14.9) 52.2 (21.5) 0.034
Range 18-89 18-85 19-88

Race, n (%) 0.712
White 84 (89.4) 76 (85.4) 129 (83.2)
Black 7 (7.4) 9 (10.1) 16 (10.3)
Other/unknown 3 (3.2) 4 (4.5) 10 (6.5)

Wt, mean no. of lbs (SD) 169.9 (56.9) 177.9 (54.5) 171.5 (47.3) 0.549

Vegetarian, n (%) 2 (2.1) 5 (5.6) 8 (5.2) 0.435

Drug use, n (%)
Antibiotics (�3 mo) 72 (76.6) 56 (62.9) 21 (13.5) �0.001
Fluoroquinolone 21 (22.3) 17 (19.1) 4 (2.6) �0.001
Amoxicillin 10 (10.6) 6 (6.7) 7 (4.5) 0.182
Cephalosporin 11 (11.7) 3 (3.4) 3 (1.9) 0.004
Clindamycin 2 (2.1) 0 5 (3.2) 0.297
Ampicillin 1 (1.1) 0 0 0.541

Other factors, n (%)
Antacid use for �30 days 20 (21.3) 20 (22.5) 11 (7.1) 0.001
Surgery within the previous 6 mo 48 (51.1) 38 (42.7) 14 (9.0) �0.001
History of C. difficile 1 (1.1) 2 (2.2) 4 (2.6) 0.793
Residing with person with CDI 1 (1.1) 2 (2.2) 1 (0.6) 0.593
Residing with health care worker 25 (26.6) 13 (14.6) 17 (11.0) 0.005
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dant in OTUs found predominantly in the nondiarrheal control
group. These group-specific taxonomic features that we have
identified may be involved in susceptibility or resistance to CDI.

Incorporation of specific bacterial populations into logit
models. Having established that incorporation of a subject’s com-
munity type could better reflect their CDI or diarrheal status than
a diversity index, we attempted to determine whether more-
specific components of those community types could improve our
models. To accomplish this, we first identified those bacterial pop-
ulations that were differentially represented in each of the three
comparisons using the linear discriminant analysis (LDA) effect
size (LEfSe) algorithm (13); these analyses excluded C. difficile
(OTU 19). Briefly, LEfSe uses (i) the Kruskal-Wallis rank sum test
to identify taxonomic features that characterize the differences
between our study groups and (ii) linear discriminant analysis to
evaluate the effect size of each feature. Within each comparison,
the OTUs with the largest effect size in each group and compari-
son were included in the respective base model (Fig. 3A).

Within the case versus nondiarrheal control comparison, 13
OTUs were significantly enriched in cases and 26 OTUs were sig-
nificantly enriched in the nondiarrheal controls (Fig. 3A). We

selected 5 OTUs that were enriched in the cases and 5 that were
enriched in the nondiarrheal controls (based on the most extreme
differences) and included their relative abundances as indepen-
dent variables in logit regression. The relative abundances of these
specific OTUs discriminated quite well between cases and nondi-
arrheal controls (AUC � 0.950) (Table S1). Additionally, the
combined base-microbiome model significantly outperformed
the base model (AUC � 0.985, P � 0.0001). Subjects having CDI
were significantly more likely to harbor Enterococcus species (OTU
2), Lachnospiraceae (OTU 14), and Erysipelotrichaceae (OTU 22)
and significantly less likely to harbor Bacteroides species (OTU 5)
than nondiarrheal controls. These results confirm the differences
that were observed between the case and nondiarrheal control
enriched community types and highlight the populations that had
the greatest contribution to the model.

In the comparison of cases and diarrheal controls, no OTUs
were significantly enriched in the diarrheal controls over the cases;
however, we identified 6 OTUs that were significantly enriched in
the cases (Fig. 3A). The relative abundances of these OTUs, when
combined in a logit model (Fig. 3C), did not significantly distin-
guish cases and diarrheal controls (AUC � 0.696, P � 0.0934).

FIG 1 Bacterial diversity distinguishes between subjects with and without diarrhea. (A) Alpha diversity was measured using the inverse Simpson index.
Statistical analysis was performed using Dunn’s multiple-comparison test. ****, P � 0.0001; n.s., no significance. Error bars represent � the standard errors of
the means (SEM). (B to D) ROC curves and AUC values with 95% confidence intervals in parentheses for each model comparing cases and nondiarrheal controls
(NDC) (B), cases and diarrheal controls (DC) (C), and diarrheal controls and nondiarrheal controls (D). Red represents the base model, blue represents the
inverse Simpson model, and green represents the base plus inverse Simpson model. The straight line represents the null model.
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Furthermore, the base plus microbiome model was not signifi-
cantly different from the base clinical model (AUC � 0.709, P �
0.0652). Unlike with the bacterial community type analysis, we
were unable to identify specific structural differences that could
distinguish between cases and diarrheal controls in this model.
These results confirm that overall microbiome structure was more
discriminatory for patients with non-C. difficile-associated and
C. difficile-associated diarrhea.

Finally, in the comparison of diarrheal controls and nondiar-
rheal controls, we identified 30 OTUs that were enriched in the
nondiarrheal controls and 7 OTUs that were enriched in the diar-
rheal controls (Fig. 3A). Individuals with non-C. difficile-associ-

ated diarrhea were more likely to have higher relative abundances
of Enterobacteriaceae (OTU 1), Enterococcus species (OTU 2), Ery-
sipelotrichaceae (OTU 22), Streptococcus species (OTU 10), and
Blautia species (OTU 11). The nondiarrheal controls were more
likely to have higher levels of several Bacteroides, Lachnospiraceae,
and Ruminococcaceae OTUs. These taxa are commonly associated
with a healthy microbiome. We used the 5 most enriched OTUs in
each of the diarrheal control and nondiarrheal control groups to
create a logit model to differentiate between the two (Fig. 3D).
These OTUs significantly differentiated the two control groups
(AUC � 0.981). The inclusion of both clinical data and these
OTUs provided considerable discrimination between the two

FIG 2 Specific community structure types significantly differentiate all population comparisons. (A) Heat map showing the structural differences between each
community type. The top 3 rows show the percentages of individuals classified as a case, diarrheal control, or nondiarrheal control across each type. The
remaining rows show the relative abundances for OTUs identified using feature selection through randomForest analysis. Although the relative abundance of
C. difficile OTU 19 is shown, it was not considered in the formation of these community types. Types are ordered by decreasing percentage of case individuals.
(B to D) ROC curves and AUC values with 95% confidence intervals in parentheses for each model comparing cases and nondiarrheal controls (B), cases and
diarrheal controls (C), and diarrheal controls and nondiarrheal controls (D). Red represents the base model, blue represents the community types model, and
green represents the base plus community type model. The straight line represents the null model.
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FIG 3 Specific bacterial populations clearly differentiate non-diarrheal controls from subjects with CDI and non-CDI-associated diarrhea. (A) LEfSe was used
to compare cases and nondiarrheal controls, cases and diarrheal controls, and diarrheal controls and nondiarrheal controls. Only the LDA scores of significant
OTUs are shown. Gray boxes indicate that values were not significant for the given comparison. The number following the bacterial name indicates the OTU
number. Black boxes show the OTUs at the 0.25-percentile cutoff for each group that were chosen for inclusion in the microbiome models. DC, diarrheal control;
NDC, nondiarrheal control. (B to D) ROC curves and AUC values with 95% confidence intervals in parentheses for each model comparing cases and
nondiarrheal controls (B), cases and diarrheal controls (C), and diarrheal controls and nondiarrheal controls (D). Red represents the base model, blue represents
the specific OTUs model, and green represents the base plus specific-OTU model. The straight line represents the null model.
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groups compared with the base model alone (AUC � 0.983; P �
0.0001). These results indicate that there were significant changes
to the microbiome when individuals had diarrhea.

DISCUSSION

We found distinct differences in the microbiomes of people with
and without CDI as well as with and without diarrhea. We devel-
oped classification models to differentiate whether individuals
had C. difficile infection or non-C. difficile-associated diarrhea
based on clinical and microbiome data. The microbiome was in-
corporated into these models using three approaches: diversity
indices, community types, and defined bacterial subsets. These
approaches of representing the microbiome allowed us to describe
the communities at various levels of resolution. When differenti-
ating between the cases and diarrheal controls, incorporation of
community types provided the only significant improvement in
detection between these two groups of patients. The inverse Simp-
son index and the utilization of specific OTUs did not differentiate
these two groups. For the comparisons of nondiarrheal controls to
cases or diarrheal controls, inclusion of the microbiome data sig-
nificantly enhanced our ability to differentiate the groups regard-
less of the approach we used to represent the microbiome. The
highest AUCs were observed when we differentiated between hos-
pitalized patients (either cases or diarrheal controls) and commu-
nity residents (nondiarrheal controls), with AUCs consistently
greater than 0.9 when both clinical and microbiome data were
considered. Specifically, representing the microbiome using spe-
cific sets of OTUs was the best approach for differentiating be-
tween hospitalized patients and community subjects. These find-
ings stress the importance of not just one individual bacterial
population or one metric of the community (e.g., diversity) but
rather collections of bacterial populations or overall community
types in detecting disease state. They also suggest the presence of
gut dysbiosis in patients with diarrhea. These results demonstrate
that knowledge of bacterial communities, not just single species,
and in combination with clinical factors may be beneficial in gen-
erating epidemiological models of disease.

It was notable that, among our three comparisons, the cases
and diarrheal controls were the most similar. First, the base model
to differentiate the two groups was unable to perform significantly
better than a null model (P � 0.19). Second, the inverse Simpson
diversity index revealed similar levels in both groups (P � 0.85).
Third, many community types characterized by high numbers of
cases were also more likely to contain diarrheal controls than non-
diarrheal controls, which tended to cluster separately from both
diarrheal groups. Finally, our OTU-based analysis did not identify
any OTUs as being significantly enriched in the diarrheal controls
relative to the cases. Because of the similarity in community struc-
tures and in clinical risk factors for CDI, results suggest that many
of the diarrheal control subjects may actually be susceptible to
CDI and have not yet been exposed to C. difficile. This implies that
any perturbation resulting in diarrhea may also contribute to CDI.
This hypothesis is particularly relevant within a hospital setting,
where C. difficile spores are abundant and where there are numer-
ous potential causes of diarrhea, including antibiotics (indepen-
dent of CDI), infection, chemotherapy, and dietary changes.

Our models that compared cases to nondiarrheal controls
showed that Bacteroides species, Lachnospiraceae, and Ruminococ-
caceae were enriched in controls and that Enterococcus species,
Enterobacteriaceae, Erysipelotrichaceae, and some Lachnospiraceae

were enriched in cases. These results confirm those of previous
related studies (10, 16–18). Members of the Lachnospiraceae and
Ruminococcaceae are the primary butyrate-producing bacteria in
the human gastrointestinal tract. Butyrate has been associated
with inhibition of C. difficile growth in vitro (19), inflammation
suppression, and the health of colonic cells. Thus, butyrate as well
as other short-chain fatty acids may represent one mechanism of
colonization resistance. Comparison of the sequences within our
Bacteroides OTU (OTU 5), which was enriched in our nondiar-
rheal controls, to sequences in an annotated 16S rRNA gene data-
base showed that they were highly similar to Bacteroides uniformis
and Bacteroides acidifaciens. B. uniformis was previously shown to
ameliorate metabolic dysfunction caused by diet-induced obesity
via changes in metabolic and immune responses (20). Because
obesity is a risk factor for CDI (21), it is possible that B. uniformis
also provides protection against infection by C. difficile. B. acidi-
faciens was demonstrated to increase IgA� B cells in the large
intestine (22), which may also limit the growth of gastrointestinal
pathogens such as C. difficile. Overall, this shift in community
structure is thought to be associated with a change in colonization
resistance. Murine models of CDI have shown that similar
changes in community structure render normally resistant mice
sensitive to colonization by C. difficile (23, 24). Similarly, a mix-
ture of 6 bacterial species that included a member of the Bacte-
roides genus and a member of the Lachnospiraceae, both of which
were found to be significantly enriched in our nondiarrheal con-
trol population, was sufficient to clear C. difficile in a murine
model of recurrent CDI (17).

Microbiome analyses have revealed that bacterial populations
are patchy across individuals and that there is no core microbiome
(12). This hinders one’s ability to consistently associate specific
bacterial populations with disease. Instead, others have developed
the concept of communities or enterotypes (25–27). Although the
biological interpretation of these clusters is controversial, our
study demonstrates that categorizing individuals into community
types or utilizing subsets of the bacterial community improves our
ability to identify individuals that belong to specific disease states.
Similar approaches have been used to associate specific commu-
nity types with the composition of one’s diet, obesity, inflamma-
tory bowel disease, Crohn’s disease, Trichomonas vaginalis infec-
tion, vaginal pH, and ethnicity (25, 27–32); however, these studies
have not combined the subject’s clinical information and commu-
nity type to evaluate disease state.

The models evaluated in this study reflect bacterial communi-
ties at a specific point in time for these three patient groups. Thus,
we are limited in our ability to assess the contribution of the mi-
crobiome toward risk or prevention of CDI. We also cannot de-
termine the length of time that cases were colonized by C. difficile
prior to sample collection. The aim of this investigation was not to
enhance CDI diagnostics but to use a model-based framework to
characterize features of the microbiome that are associated with
CDI and health. Our approach suggests that knowledge of an in-
dividual’s microbiome composition is useful in distinguishing
disease from health. However, prospective studies are needed to
validate microbiome-based biomarkers of CDI risk. Identification
of such risk factors will be possible only if samples are collected
before the development of CDI. Furthermore, previous modeling
has shown that albumin levels, white blood cell counts, creatinine
levels, age, and increased leukocyte count can be used to predict
CDI severity and mortality (4, 9, 33). It is possible that the incor-
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poration of microbiome data can also be used to improve predic-
tions of disease outcome. However, in the current investigation,
we did not collect sufficient CDI severity data to address this pos-
sibility. As we have demonstrated in this study, there are distinct
microbiome signatures that are associated with CDI. Understand-
ing which community-wide changes are responsible for the loss in
resistance to colonization leading to CDI is critical for future risk
models and therapeutics.

MATERIALS AND METHODS
Sample collection and definitions. This study was approved by the Uni-
versity of Michigan Institutional Review Board. The inpatient samples
were collected from October 2010 to January 2012 at the University of
Michigan Hospital, Ann Arbor, MI. All enrollees granted patient consent.
Inpatient subjects were not pregnant, they were suspected of having an
initial episode of CDI (not recurrent CDI), and their stool sample was
diarrheal. Within 24 h of stool collection, these specimens were screened
for C. difficile using the C.Diff Quik Chek Complete assay (Techlab,
Blacksburg, VA). This rapid membrane enzyme immunoassay tests for
the presence of both the C. difficile antigen glutamate dehydrogenase
(GDH) and the C. difficile toxin proteins A and B. If this test resulted in a
positive or negative result for both GDH and toxin proteins, the sample
was classified as a case or as a diarrheal control, respectively. If the test was
positive only for GDH, a PCR screen for the C. difficile tcdB gene, which
encodes the toxin B protein, was performed (34). To confirm the results of
the clinical lab, we additionally performed PCR on all inpatient samples
using C. difficile-specific 16S rRNA gene primers as described elsewhere
(35). Nondiarrheal, C. difficile-negative samples were collected between
January 2011 and January 2012 from individuals residing in the area sur-
rounding Ann Arbor, MI. Subjects were excluded if they had had any signs
of diarrhea in the previous 7 days or were pregnant. Once enrolled, indi-
viduals collected a stool sample using the provided home stool specimen
kit.

DNA sequencing and curation. Total bacterial DNA was extracted
from each stool sample using the PowerSoil-htp 96-well soil DNA isola-
tion kit (MO Bio Laboratories, Carlsbad, CA) on an EpMotion 5075
liquid-handling workstation (Eppendorf, Hamburg, Germany). The V35
region of the 16S rRNA gene was amplified and sequenced using the
454 GS FLX pyrosequencing platform and curated using mothur as pre-
viously described (36, 37). We sequenced and processed a mock commu-
nity in parallel with the samples sequenced for this study (37). The ob-
served error rate among the mock community samples was 0.009%.
Sequences were clustered into operational taxonomic units (OTUs) using
a 3% distance cutoff (38). Taxonomic assignments were determined by
using a naive Bayesian classifier with the Ribosomal Database Project
(RDP) training set (version 9) with an 80% bootstrap confidence thresh-
old. To mitigate against the effects of uneven sampling, all samples were
rarefied to 1,450 sequences per sample (37). Among the samples with
more than 1,450 sequences, the number of sequences per sample varied
from 1,450 to 17,120, with a mean of 6,091 sequences/sample, a median of
5,986, and a median absolute deviation of 1,296. The OTU corresponding
to C. difficile (OUT 19) was identified by checking the representative se-
quence against the NCBI nucleotide database with BLASTn. All 16S rRNA
gene sequence data and the associated MIMARKS table are available at
http://www.mothur.org/CDI_MicrobiomeModeling.

Statistical analyses. Initial statistical analyses were conducted to assess
differences among the three study groups (C. difficile cases, diarrheal con-
trols, and nondiarrheal controls). For continuous variables (e.g., age and
weight), one-way analysis of variance was utilized. For categorical vari-
ables, Pearson’s chi-square test or Fisher’s exact test was performed when
expected cell frequencies were less than or equal to 5. The principal intent
of the analyses was to assess whether the addition of microbiome data
added to case differentiation, and as such, nested logit models were con-
structed with clinical data, with and without the incorporation of micro-
biome data. We utilized three approaches to capture the biodiversity of

the gut microbiome. First, the inverse Simpson index was calculated for
each sample and treated as a continuous variable in the models (39).
Second, we assigned each sample to a different community type and used
the type as a categorical variable in the model. These community types
were identified by partitioning around medoids (PAM) of a Jensen-
Shannon divergence distance matrix calculated from the microbiome
data (27). The randomForest package in R (http://cran.r-project.org/),
with the number of trees set to 1,000, was used to differentiate the com-
position of each cluster. Third, we built models using the relative abun-
dances of a subset of the OTUs observed across the individuals. These
OTUs were selected using LEfSe based on the comparisons of cases versus
diarrheal controls, cases versus nondiarrheal controls, and diarrheal con-
trols versus nondiarrheal controls (13). OTUs demonstrating the greatest
differences (at a 0.25-percentile cutoff at both ends) were used as contin-
uous variables in our logit models. The 0.25-percentile cutoff was selected
to restrict the number of significant OTUs in order to build the models
and avoid overfitting. Differences between nested models were compared
using the test for the equality of ROC areas (15). Analyses were conducted
in Stata/MP 12.1 and R version 3.0.1.
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