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■ Abstract Uncultured microorganisms comprise the majority of the planet’s bio-
logical diversity. Microorganisms represent two of the three domains of life and contain
vast diversity that is the product of an estimated 3.8 billion years of evolution. In many
environments, as many as 99% of the microorganisms cannot be cultured by standard
techniques, and the uncultured fraction includes diverse organisms that are only dis-
tantly related to the cultured ones. Therefore, culture-independent methods are essential
to understand the genetic diversity, population structure, and ecological roles of the ma-
jority of microorganisms. Metagenomics, or the culture-independent genomic analysis
of an assemblage of microorganisms, has potential to answer fundamental questions in
microbial ecology. This review describes progress toward understanding the biology
of uncultured Bacteria, Archaea, and viruses through metagenomic analyses.
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INTRODUCTION

Obtaining bacteria in pure culture is typically the first step in investigating bacterial
processes. However, standard culturing techniques account for 1% or less of the
bacterial diversity in most environmental samples (2). Although some significant
breakthroughs have resulted from recent attempts to culture the as-yet-unculturable
bacteria (56, 89, 99, 127), a suite of culture-independent techniques are needed to
complement efforts to culture the thousands or millions of unknown species in the
environment.

A new era of microbial ecology was initiated when sequencing of ribosomal
RNAs and the genes encoding them was introduced to describe uncultured bacteria
in the environment. The first approach was to sequence clones from a 5S rRNA
cDNA library derived from the symbiotic community within the tubeworm Riftia
pachyptila (109). Variations of this method generated a set of culture-independent
techniques to (a) reconstruct phylogenies, (b) compare microbial distributions
among samples using either nucleotide sequence or restriction fragment length
polymorphisms (RFLPs), and (c) quantify the relative abundance of each taxo-
nomic group using membrane hybridization or fluorescent in situ hybridization (2,
47, 57, 78–80).

The most startling result of the many microbial diversity studies that have
employed 16S rRNA culture-independent methods is the richness of the uncultured
microbial world. As of April 1, 2004, GenBank contained 21,466 16S rRNA genes
from cultured prokaryotes and 54,655 from uncultured prokaryotes, according to
the search terms described by Rappé & Giovannoni (90), and many of those from
uncultured organisms affiliate with phyla that contain no cultured members. When
Woese (121) originally proposed a 16S rRNA-based phylogeny, 12 bacterial phyla
were recognized, each with cultured representatives. Since then, 14 additional
phyla with cultured representatives have been identified. In addition, 16S rRNA
gene sequence analysis suggests 26 candidate phyla that have no known cultured
representatives (90). Therefore, half of the known microbial phyla have no cultured
representatives.

Among the phyla that contain cultured members, a few contain many isolates
and the rest contain too few to represent the full spectrum of diversity in the
phylum. For example, Hugenholtz (53) found that 97% of prokaryotes deposited
in the Australian Culture of Microorganisms in 2001 were members of just four
phyla: the Proteobacteria (54%), Actinobacteria (23%), Firmicutes (14%), and
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Bacteroidetes (6%). Within GenBank, 76% of the 16S rRNA gene sequences of
cultured prokaryotes are from these four groups. But other phyla may be more
diverse, prevalent, and ecologically consequential in the environment. 16S rRNA
gene sequences from the Acidobacterium phylum are among the most abundant
in clone libraries obtained from soil and have been found in all soils examined,
suggesting that the Acidobacteria play important roles in soil ecosystems. How-
ever, of the 684 Acidobacterium 16S rRNA gene sequences in GenBank, only 19
(2.8%) are from cultured isolates, providing an inadequate collection to describe
the physiological diversity of the phylum. Other than 16S rRNA gene sequences,
little is known about the bacteria within the 22 poorly cultured phyla and 26 candi-
date phyla. Many terms, such as unculturable, uncultivated, as yet uncultured, and
not yet cultured, are used to refer to microorganisms that we know of only through
culture-independent means. In this review, we refer to them as uncultured.

Describing the phylogenetic diversity of uncultured microorganisms is only the
first step. A greater challenge is to assign ecological roles to them. The uncultured
microbiota must play pivotal roles in natural environmental processes and are a
large untapped resource for biotechnology applications. Exploiting the rich micro-
bial biodiversity for enzyme and natural product discovery is an active research
area that has been reviewed elsewhere (39, 45, 46, 65, 66, 77, 97, 104). This re-
view discusses the application of culture-independent genomics-based approaches
to understand the genetic diversity, population structure, and ecology of complex
microbial assemblages (26, 93, 94).

METAGENOMICS DEFINED

“Metagenomics” describes the functional and sequence-based analysis of the col-
lective microbial genomes contained in an environmental sample (Figure 1) (45).
Other terms have been used to describe the same method, including environ-
mental DNA libraries (110), zoolibraries (55), soil DNA libraries (68), eDNA
libraries (13), recombinant environmental libraries (22), whole genome treasures
(77), community genome (114), whole genome shotgun sequencing (115), and
probably others. In this review, we use metagenomics to describe work that has
been presented with all of these names because it is the most commonly used term
(15, 27, 35, 59–61, 65, 66, 82, 105, 107, 117, 118), was used for the title of the first
international conference on the topic (“Metagenomics 2003” held in Darmstadt,
Germany), and is the focus of an upcoming issue of the journal Environmental Mi-
crobiology. The definition applied here excludes studies that use PCR to amplify
gene cassettes (52) or random PCR primers to access genes of interest (17, 32),
since these methods do not provide genomic information beyond the genes that are
amplified. Many environments have been the focus of metagenomics, including
soil, the oral cavity, feces, and aquatic habitats, as well as the hospital metagenome,
a term intended to encompass the genetic potential of organisms in hospitals that
conribute to public health concerns such as antibiotic resistance and nosocomial
infections (20).
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Figure 1 Metagenomics involves constructing a DNA library from an en-
vironment’s microbial population and then analyzing the functions and se-
quences in the library.

The concept of cloning DNA directly from an environment was initially sug-
gested by Pace (79) and first implemented by Schmidt et al. (106), who constructed
a λ phage library from a seawater sample and screened it for 16S rRNA genes.
Advances by the DeLong group in cloning DNA directly from seawater provided
the landmark work that launched the field (110). Development of metagenomic
analyses of soil was slower than with seawater because of the technical challenges
of cloning DNA from the complex matrix of soil, which contains many compounds
that bind to DNA or inhibit the enzymatic reactions required for cloning. Signifi-
cant progress has been made, producing libraries that have substantially advanced
understanding the functions in the soil community (96). The past eight years have
witnessed an explosion of interest and activity in metagenomics, accompanied by
advances in technology that have facilitated studies at a scale that was not feasible
when the field began. For example, the seminal paper in 1996 by Stein et al. (110)
reported the sequencing and reconstruction of a 40-kb fragment from an uncultured
marine archaeon, which was a major undertaking at the time. In 2004, Venter et al.
(115) reported their attempt to sequence the entire metagenome of the Sargasso
Sea by obtaining over 1 million kb of nonredundant sequence. The advances in
sequencing technology have expanded the approaches and questions that can be
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considered with metagenomics, providing access to a staggering amount of ge-
nomic information. Metagenomic technology has been successful at all scales—it
has been used to study single genes (e.g., cellulases, 48), pathways (e.g., antibiotic
synthesis, 96), organisms (e.g., Archaea, 110), and communities (e.g., acid mine
drainage biofilm, 114). Approaches that involve massive sequencing to capture
entire communities will likely become more common with further advances in
sequencing technology.

LINKING PHYLOGENY AND FUNCTION
WITHIN SPECIES

Phylogenetic Anchors

The first metagenomic studies aimed to link a function with its phylogenetic source,
providing information about one species within a community. One of the challenges
with this approach is to link a phenotype with the identity of the original host. Three
approaches have been taken: Screen a metagenomic library for a phenotype and
then attempt to determine the phylogenetic origin of the cloned DNA (Table 1),
screen clones for a specific phylogenetic anchor (e.g., 16S rRNA) or gene and then
sequence the entire clone and search for genes of interest among the genes flanking
the anchor (Table 2), or sequence the entire metagenome and identify interesting
genes and phylogenetic anchors in the resulting reconstructed genomes (Table 3).

Function Then Phylogeny

Diverse activities have been discovered by functional analysis of metagenomic
libraries. New antibiotics (11–14, 36, 68, 96, 119, 120), hydrolytic and degrada-
tive enzymes (21, 48–50, 59, 60, 91, 96, 117), biosynthetic functions (31, 61),
antibiotic resistance enzymes (22, 92), and membrane proteins (69) have been
identified. The diversity of functionally active clones discovered in metagenomic
libraries validates the use of functional screens as one means to characterize the
libraries. Antimicrobial screens have revealed new antibiotics such as terragine
(119), turbomycin A and B (36), and acyl tyrosines (13), as well as previously
described antibiotics such as indirubin (68) and violacein (12). Most of these com-
pounds are structurally based on common cell substituents, such as amino acids,
and none requires more than a few genes for its synthesis. The goal of identify-
ing new polyketide, macrolide, and peptide antibiotics (45) may require different
methods. Enhancing expression of genes in metagenomic libraries may lead to dis-
covery of a wider array of natural products. This will be accomplished by moving
the libraries into alternative hosts, such as Streptomyces, which was the basis for
discovery of terragine (119). Alternative hosts may enhance gene expression or
provide starting materials that Escherichia coli does not contain. E. coli can be en-
gineered to express a wider range of functions by introducing genes encoding new
sigma factors, rare tRNAs, or functions required to synthesize starting materials
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TABLE 3 Metagenomics studies based on random sequencing

Insert Sequence Base pairs
Environment size (kb) reads of sequence Goal Reference

Feces LASLa 532 ∼37,000 Random viral (15)
clone sequencing

Marine LASLa 1061 ∼740,000 Random viral (16)
clone sequencing

Drinking Plasmid and 2496 2 × 106 Random clone (105)
water network Cosmid sequencing
biofilms

Acid mine 3.2 103,462 76.2 × 106 Reconstruct genome (114)
drainage of microbial

community

Marine 2.6 2 × 106 1.63 × 109 “Pilot study” of (115)
large-scale whole
community sequencing

aLASL: Linker amplified shotgun library

for antibiotic biosynthesis that are deficient in E. coli. Alternatively, sequences that
carry conserved regions of genes associated with antibiotic biosynthesis, such as
the polyketide synthases and peptide synthetases, may be identified by sequenced-
based screens that do not require heterologous gene expression. This approach
successfully identified clones carrying a novel hybrid polyketide synthase-peptide
synthetase gene cluster from an uncultured bacterial symbiont of a beetle (81).

Novel enzymes have been revealed in metagenomic libraries by screening
clones directly for activity (49, 50, 96). Pigments have been identified by visual
inspection (12, 36, 68). These methods require handling individual clones, usually
in an array format. Because the frequency of active clones is low, high-throughput
methods are essential for efficient screening. Selection for the ability to grow on
hydroxyl-butyrate as the sole carbon and nitrogen source provided a powerful
selection for clones carrying new degradative enzymes (49), and selection for an-
tibiotic resistance identified new antibiotic resistance determinants from soil (22,
92) and from oral flora (27).

Linking new functions with the organisms from which they were cloned will
facilitate ecological inferences and may lead to culturing strategies for uncultured
species. Several approaches have been used to identify the phylogenetic origin
of functionally active clones. First, to determine which phylogenetic groups are
represented in a metagenomic library, 16S rRNA gene libraries have been con-
structed using DNA from the metagenomic library as the template for PCR (43,
63, 68, 96, 117). Comparing the phylogenetic distribution of 16S rRNA sequences
in the environmental sample and the metagenomic library can reveal biases in
library construction (63). The nucleotide sequence of the genes that flank the
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region of functional interest can provide the basis for inferences about phylogeny
that are supported by similarity of the flanking genes to genes of known function
in GenBank (31, 48, 59–61, 81). Conclusions from these analyses must be treated
cautiously because horizontal gene transfer and the lack of functional homologues
in the database may confound the results, leading to matches in flanking DNA
originating in two different phyla (48). However, the presence of many cloned
genes on a clone that all show similarity to genes from related organisms can bol-
ster phylogenetic claims. Analyses of G + C content and codon usage within the
region of interest and the flanking gene sequences may suggest the phylogenetic
origin of the cloned DNA, although this approach has not been widely successful
to date (19).

Phylogeny Then Function

Concerted effort devoted to finding clones carrying phylogenetic anchors from the
least known taxons has produced impressive collections of clones derived from
some of these groups. Sequence analysis of the DNA that flanks phylogenetically
informative genes has provided the first glimpses into the genetic potential of taxa
that contain no cultured members (Table 2). rRNA genes are the most widely
used anchors (6, 9, 43, 63, 64, 84, 85, 102, 110, 116), and radA/recA homologues
(100) have been informative as well. Other genes that contain phylogenetic in-
formation but have not been used in metagenomic analyses include DNA gyrase
(125), chaperonin-60 (38, 51, 108), RNA polymerase β-subunit (24, 73), ATPase
β-subunit (67), elongation factor TU (67), heat shock protein 70 (41), σ 70-type
sigma factor (42), and tRNA synthetases (122, 123). The phylogenetic anchor ap-
proach has been a rich source of information that can be used to develop hypotheses
about the function and physiology of uncultured members of microbial commu-
nities that were previously known only by their 16S rRNA gene signature. Use
of more phylogenetic anchors will increase the frequency of functionally active
clones that also contain anchors.

A consistent result of most studies that initially screen for a phylogenetic an-
chor is the identification of a large number of ORFs that are either hypothetical
or have no known function. Initially, this information does little to describe the
niche that the organism fills in the environment, but the sequence provides G + C
content, codon usage, promoter sites, and other characteristics that may be help-
ful in achieving expression of genes from phyla with no cultured representatives.
These sequences also enrich the databases, offering insight subsequently when the
function is determined for a homologue of the same gene family.

Acidobacterium Phylogeny and Function

Genomic information about uncultured bacteria may hasten development of media
for their culture (5, 18, 63, 85, 116). This will be a needed boost to the laborious
work that has led to significant recent advances in culturing technology (56, 89,
99, 127). The Acidobacterium phylum has been largely recalcitrant to culturing
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and has attracted attention because of its abundance and wide distribution on Earth
(63, 85). This phylum has been divided into eight groups (4, 54). Janssen et al.
(56, 99) have made tremendous advances in culturing members of the phylum,
although all cultured members are from three of the eight groups.

Metagenomics has provided the first information beyond 16S rRNA gene se-
quences about the uncultured Acidobacterium subgroups based on partial and
full-length sequencing of six fosmid clones (∼35 kb each; 85) and 12 BAC clones
(25 kb; 63) from uncultured soil Acidobacterium members. Two of the clones are
from members of Acidobacterium Group III, five are from Group V, and 11 are
from Group VI. These clones provide a preliminary indication that the Acidobac-
terium phylum contains substantial genetic diversity. Among the Group V clones,
for example, the G + C content of one is 56% and the other four range from 62%
to 68%, while the one cultured member of this group, A. capsulatum, has a G + C
content of 60%. Some of the metagenomic clones that affiliate with the Acidobac-
terium phylum have been fully sequenced, revealing many genes with homology
to housekeeping genes involved in DNA repair, transport, cell division, transla-
tion, and purine biosynthesis. Other gene sequences include those with homology
to genes encoding cyclic β 1′-2′ glucan synthetase, polyhydroxybutyrate depoly-
merase, Bacteroides fragilis aerotolerance functions, and an operon distantly re-
lated to the lincomycin biosynthesis pathway of Streptomyces lincolnensis (85),
which provide hints about ecological roles of the Acidobacteria.

Ten of the 22 ORFs on one Acidobacterium fosmid clone showed homology
to genes from members of the Rhizobiales within the α-Proteobacteria phylum
(85). Comparison of the fosmid sequence to the gene sequences from Rhodopseu-
domonas palustris and Bradyrhizobium japonicum, Quaiser et al. (85) revealed
a colinear 10-kb region containing eight ORFs, which had homology to genes
encoding a penicillin-binding protein, zinc metalloprotease, hydroxybutyrate de-
polymerase, and a highly conserved two-component histidine kinase response reg-
ulator. A phylogenetic analysis of the response regulator indicated that one gene
affiliated within the Rhizobiales and the second gene affiliated with other groups
in the α-Proteobacteria. This 10-kb region was contiguous to an Acidobacterium-
type rrn operon, suggesting that this region might be the product of horizontal
gene transfer (85).

Archaeal Phylogeny and Function

Just as culture-independent methods recalibrated thinking about the dominant or-
ganisms in soil, indicating that the Acidobacteria were far more abundant than
had been established by culturing, the discovery of 16S rRNA gene sequences
that affiliate with the Archaea in diverse terrestrial and marine environments on
Earth has significantly altered the microbiologist’s image of Archaea. Like the
Acidobacteria, Archaea in the Crenarchaeota phylum have been refractory to cul-
turing, making it challenging to elucidate their role in the environment. There
has been significant interest in applying metagenomics to learn more about the
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members of the Archaea in soil (84) and as planktonic organisms in seawater (6,
9, 43, 64, 110). Six clones produced in fosmids, cosmids, or BACs, which contain
16S rRNA genes that affiliate with the Archaea, have been sequenced.

A particularly fruitful application of metagenomics to Archaea has been the
study of the symbiotic community of an Axinella sp. sea sponge (100, 101, 103).
In a culture-independent 16S rRNA gene survey, Preston et al. (83) found that
65% of the symbiotic community associated with the sponge was represented by a
single archaeal 16S rRNA gene sequence. They proposed the name Cenarchaeum
symbiosum for the uncultured archaeal symbiont. Schleper et al. (101, 103) then
constructed fosmid libraries of the prokaryotic community and identified 15 unique
clones that harbored 16S rRNA genes.

Analysis of the 15 clones revealed genetic variation within the C. symbiosum
population and provided insight into the role of the population within the sponge
(101). After identifying two 16S rRNA sequence variants that differed by two
point mutations over a 590-bp region, they sequenced one fosmid clone from each
variant. The 16S genes of the two clones were 99.2% identical while the 28-kb
colinear region that they shared had 87.8% overall DNA identity, and 91.6% simi-
larity in ORF amino acid sequence. Of the 17 ORFs in the 28-kb region shared by
the two variants, eight had no known function, and the others had functions related
to heme and menaquinone biosynthesis, glycolysis, DNA replication and repair,
protein folding, and DNA methylation. The DNA polymerase found in this region
was expressed and characterized in an E. coli host (103). The complete genome
sequence of C. symbiosum will contribute to understanding its biology and symbi-
otic relationship with its sponge host. There is precedent for this in the symbiosis
between the aphid Baizongia pistacea and the bacterium Buchnera aphidicola.
B. aphidicola is found in pure culture as an endosymbiont of its host. The complete
genome sequence for the bacterium revealed a complex biochemical symbiosis be-
tween the partners in which each partner had lost biochemical functions that the
other conducted for both of them (112). The B. aphidicola system illustrates the
power of genomics to elucidate the biology of uncultured microorganisms.

Proteorhodopsin Function and Phylogeny

Discovery of the rhodopsin-like photoreceptors in marine Bacteria exemplifies the
type of biological surprise that can be revealed through metagenomic analysis.
Previously, rhodopsins had been found only in Archaea, not in members of the do-
main Bacteria. Béjà et al. (5) sequenced a 130-kb fragment that contained the 16S
rRNA operon of an uncultured γ -Proteobacterium (the SAR 86 group) and dis-
covered a bacteriorhodopsin, which indicated a novel taxon of marine phototroph.
The bacteriorhodopsins couple light-energy harvesting with carbon-cycling in the
ocean through nonchlorophyll-based pathways, and the new homologue was ex-
pressed in E. coli and shown to bind retinal and form an active, light-driven,
proton pump. Subsequent studies showed that many marine Proteobacteria harbor
“proteorhodopsins,” that are optimized for various light wavelengths at different
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ocean depths (7, 8, 25, 70, 98). This line of research was successful at show-
ing that bacteria that harbor proteorhodopsin variants are widespread, and recent
work by Venter et al. (115) using a shotgun sequencing approach revealed that
the class of proteorhodopsins previously observed is a small subset of the total
proteorhodopsin diversity.

LINKING PHYLOGENY AND FUNCTION IN
MICROBIAL COMMUNITIES: METAGENOME
RECONSTRUCTION

As sequencing technology has improved, it has become feasible to sequence the
entire metagenome of an environmental sample. Most environments contain com-
munities far too complex for it to be possible to sequence a complete metagenome,
and even the simple communities contain microheterogeneity that makes most
genome reconstructions simplified versions of reality. However, it is useful to re-
fer to a metagenome, just as it is useful to refer to the human genome, although it
is widely recognized that the true human genome is far more complex and variable
than the published genomic sequence, which is based on a few of the 6 × 109

members of the species. Reconstruction was initially pursued for viral commu-
nities in the ocean and human feces (15, 16) and has since been attempted in an
acid mine drainage (AMD) biofilm (114) and the Sargasso Sea (115). The AMD
biofilm community was ideal for complete metagenome sequencing because 16S
rRNA gene sequencing indicated that there were three bacterial and three archaeal
species in the biofilm. Marine communities contain far greater species richness,
on the order of 100 to 200 species per ml of water (23), making the sequencing
and assembly effort considerably more difficult. Further out on the continuum
of biological complexity is soil, with an estimated species richness on the or-
der of 4000 species per gram of soil (23, 113). Sequencing the soil metagenome
requires faster and less expensive sequencing technology than currently avail-
able. Meanwhile, soil metagenomics continues to focus on targeted biological
questions, thereby elucidating a slice of the community’s function by genomic
analysis.

Metagenomic Analysis of Bacteriophage

Microbial communities are dominated by bacteria, and bacterial populations are
dominated by bacteriophage. Bacteriophages influence the diversity and popula-
tion structure of microbial communities (124). Like their bacterial counterparts,
most bacteriophages have never been studied in the laboratory because they rep-
resent staggering diversity (95), and many of their hosts have not been cultured.
Complete viral genome sequences are also necessary for viral phylogeny studies
since there is no equivalent to the 16S rRNA gene for virus phylogeny. Using
metagenomic analyses, two recent studies examined phage diversity of the human
gut and marine environments.
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The microbial community within the human gut is complex, consisting of more
than 400 species (15). To investigate the phage population in the human gut, Breit-
bart et al. (15) conducted a metagenomic analysis of the viral community in human
feces. They constructed a library containing random fragments of viral DNA from
a preparation of virus particles isolated from a 500-g human fecal sample, end-
sequenced 532 clones, and found that 59% of them did not contain significant
similarity to previously reported sequences. The viral community contains ap-
proximately 1200 genotypes, which probably outnumber the bacterial species in
the human intestine. The viral community may affect community structure by in-
fecting and lysing particular members of the bacterial community and enhancing
its diversity by mediating genetic exchange between bacteria.

In another study, Breitbart et al. (16) described a metagenomic analysis of
marine phage collected at two locations. In total, almost 2000 viral sequences
were obtained. The results suggest that the phage populations differed between
the two marine locations and between the marine and fecal samples. For instance,
T7-like podophages comprised over 30% of the marine phage types (16) and less
than 6% of the fecal phage types (15). The predominance of gram-positive bacteria
in the gut and gram-negative bacteria in seawater is at least partly responsible for
the substantial difference in viral communities.

Metagenome of the Microbial Community
in Acid Mine Drainage

Acid mine drainage results from bacterial iron oxidation, which leads to acidifica-
tion due to dissolution of pyrite in abandoned mines (29). The microbial biofilm
growing in the AMD in the Richmond mine at Iron Mountain, California, has a
pH of 0.83, temperature of 43◦C, and high concentrations of Fe, Zn, Cu, and As
(114). Sequences of the 5′ and 3′ ends of 384 16S rRNA genes obtained from the
biofilm revealed members of Leptospirillum groups II and III, Sulfobacillus sp.,
Ferroplasma sp., “A-plasma,” and “G-plasma.” There are also protists containing
Rickettsiales-type endosymbiotic bacteria (3).

METAGENOME RECONSTRUCTION Ferroplasma acidarmanus fer1, an archeon in
the mine has been grown in pure culture, and its genome has been sequenced,
although attempts to grow other members of the community in culture have been
unsuccessful. To sequence the genomes of the uncultured Bacteria and Archaea in
the biofilm, Tyson et al. (114) extracted DNA directly from the biofilm, constructed
a small insert library (average insert size of 3.2 kb), and obtained 76.2 Mbp of se-
quence data from 103,462 reads. They partitioned the community into populations
and identified five sequence “bins”: high G + C scaffolds with 3x and 10x cover-
age, low G + C scaffolds with 3x and 10x coverage, and short scaffolds with poor
coverage. Each of the four bins with greater than 3x coverage contained a single
16S rRNA gene fragment, enabling them to assign a phylogenetic identity to each
bin with confidence. Based on this analysis, they obtained near-complete genome
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sequences of Leptospirillum group II and Ferroplasma type II and partial genome
sequences for Leptospirillum group III, Ferroplasma type I, and G-plasma.

BIOGEOCHEMISTRY With a metagenome sequence, Tyson et al. (114) set out to
determine the ecological role of each of the five prokaryotes in the acid mine
drainage. Genes that would enable most of the organisms to fix carbon via the
reductive acetyl coenzyme A pathway were identified within each of the genome
sequences. Based on the many genes in the Ferroplasma type I and II genomes that
have significant similarity to sugar and amino acid transporters, they predicted that
these Ferroplasma spp. preferred a heterotrophic lifestyle. The only N2 fixation
genes that were identified in the metagenome belonged to the genome of the Lep-
tospirillum group III population. Because of its specialized role in the environment
and relatively low abundance (10%), Leptospirillum group III was proposed as a
keystone species. They tested and supported this hypothesis by isolating Leptospir-
illum group III in pure culture from a N2-based enrichment (J.F. Banfield, personal
communication). Other genes that are potentially responsible for microaerophilic
survival, biofilm formation, acid tolerance, and metal resistance were observed.

Many of the hypotheses suggested in the AMD study will be evaluated by con-
structing microarrays and developing new techniques for isolating the uncultured
prokaryotes (114). The simplicity of the community and the differences in G +
C content of its members facilitated the powerful genomic reconstruction in the
AMD biofilm. The genomics, coupled with keen insight into the chemistry of the
environment, produced inferences and hypotheses that will lead to future studies
to culture each of the community’s members and unravel the complex interactions
that produce this extreme environment.

Metagenome of the Microbial Community in the Sargasso Sea

Venter et al. (115) conducted a massive sequencing project focused on the mi-
crobiota of the nutrient-limited Sargasso Sea, an intensively studied marine en-
vironment. Two million random sequences yielded over 1.6 billion base pairs of
sequence information, including approximately 1.0 billion base pairs of nonredun-
dant sequence.

BIOGEOCHEMISTRY Although the interpretation of this huge dataset has barely be-
gun, new insights into the biogeochemistry of marine ecosystems have emerged.
First, contrary to the entrenched dogma that oceanic nitrification is mediated by
bacteria, the authors identified an archaeal scaffold that contains an ammonium
monooxygenase. Second, among the sequences derived from the phosphorus-
limited Sargasso Sea are genes thought to be involved in uptake of phosphorus
in various forms; these include polyphosphates, pyrophosphates, phosphonates,
and other inorganic phosphorus. These results augment a relatively thin literature
about the phosphorus cycle. Compared with the five other major elements (C,
N, O, H, S), relatively little is known about how phosphorus enters biological
systems and changes oxidation state. Therefore, examining a phosphorus-limited
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environment is a likely place to search for new mechanisms of phosphorus acquisi-
tion. The Sargasso Sea study provides the basis for functional studies to determine
how these phosphorus acquisition genes are deployed to promote survival in a
phosphorus-deficient community.

GENOME ORGANIZATION AND RECONSTRUCTION Overlapping sequences were
assembled into scaffolds and then sorted into tentative “organism bins” based
on three criteria: oligonucleotide frequencies, read depth, and similarity to previ-
ously sequenced genomes. Due to the immense microbial diversity of the Sargasso
Sea, relatively few complete microbial genomes were assembled, despite the large
amount of sequence data accumulated. When “reconstructing” genomes from the
environment, care must be taken not to generate chimeric genomes that do not exist
in nature. Venter et al. (115) set a good standard for the field by making the trace
files of individual sequences available so that others can check the validity of the as-
sembled scaffolds or reanalyze the data as sequence assembly algorithms improve.

In comparison to culture-independent methods that are based on individual
genes (usually 16S rRNA), large-scale sequencing of environmental genomes pro-
vides insights into microbial diversity at much higher resolution. Unlike traditional
genome sequencing projects, which start with a homogeneous clonal population,
environmental samples are likely to contain multiple strains of any given species
(or phylotype). Heterogeneity makes the accurate assembly of discrete genomes
difficult, but the sequences offer unprecedented opportunities to understand evo-
lutionary events within natural microbial populations.

IMPACT ON PUBLIC DATABASES The vast amount of data from the Sargasso Sea
study contribute to metagenomics and microbial ecology, providing the largest ge-
nomic dataset for any community on Earth. But the data have also skewed genomic
analysis: As of April 1, 2004, 5% of GenBank was from the Sargasso Sea scaffold
collection. A BLAST analysis of one sequence read from their collection against
GenBank will often identify 50 similar DNA fragments of no known function that
are all from the Sargasso Sea, making annotation laborious. It might be useful for
users of GenBank to have the option to exclude or include environmental DNA
sequences from their searches, just as users of the Human EST database can se-
lect sublibraries to search. It is critical that users of the databases are aware that
finding matches to sequences from the Sargasso Sea is more likely to be due to the
abundance of sequences from this study than to ecological similarities.

CHALLENGES WITH METAGENOMIC ANALYSIS

Phylogenetic Anchors

The ideal phylogenetic anchor would be equally represented in all species. The 16S
rRNA genes do not meet this standard because microorganisms differ in the number
of rrn operons they carry in their genomes, with a range of 1 to 15 (58). If the number
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of rrn operons is positively correlated with growth rate, as has been postulated (58),
then slow-growing, difficult to culture bacteria would be poorly represented in 16S
rRNA libraries generated by PCR, and their 16S rRNA genes would occur less
often in metagenomic clones than the 16S rRNA genes of their rapidly growing
counterparts. Once genomes have been reconstructed, one rrn operon per genome
is sufficient to determine the phylogenetic affiliation of the source of the genes
in the genome, but in the absence of metagenome reconstruction for an entire
environment, phylogenetic anchors that are found at frequent intervals in genomes
are essential. When it is not possible to identify a 16S rRNA gene, another anchor is
needed.

An alternative to finding phylogenetic anchors on a DNA fragment encoding a
function of interest is to find fragments of the genome that are linked to the one
of interest and search for phylogenetic anchors on them. This method increases
the effective size of the contiguous piece of DNA that is being analyzed without
requiring an increase in the size of the inserts in the library. To find fragments that
are linked in a simple community, a library with high redundancy is needed. The
clones can be blotted on a membrane and then probed with the clone of interest to
identify those that have an end overlapping with it (110) or clones can be screened
by PCR for overlapping regions (84). Neither of these methods has been reported
as successful, but this is an area of rapid development and functional methods will
likely be established in the future.

Size of Metagenomes

Constructing metagenomic libraries from environmental samples is conceptu-
ally simple but technically challenging. If seawater contains 200 species per
ml (23), then the metagenome would contain 1 Gbp of unique DNA. To ob-
tain greater than single sequencing coverage, the size of a metagenomic library
would need to be many times the size of the metagenome. Because members
of a community are not equally represented, it is likely that a metagenomic
library of minimum coverage would only represent the genomes of the most
abundant species. To obtain substantial representation of rare members (<1%)
of the community, the library would likely need to contain 100- to 1000-fold
coverage of the metagenome. A library of 500 Gbp might be required to capture
the species richness in 1 ml of seawater. Cloning the metagenome of soil, with
a species richness 20-fold higher than seawater (23), would be a considerably
more daunting prospect (10,000 Gbp). These examples illustrate several chal-
lenges in constructing and interpreting information from metagenomic libraries:
(a) a large amount of DNA must be isolated and cloned from a small sample,
(b) many clones and sequences must be processed to provide meaningful data, and
(c) lognormal-type population distributions make it difficult to represent the minor
species from a sample. Each of these challenges is being addressed, and several
studies evaluating methods for library construction have been published (10, 33, 34,
37, 44).
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Size of Inserts

Strategies for library construction vary depending on the intended study of the
resulting library. Libraries containing large DNA fragments are constructed in
lambda phage, cosmid, fosmid, and BAC vectors. Most of the reported large-
insert metagenomic libraries contain fewer than 100,000 clones (Tables 1 and 2)
and are several orders of magnitude too small to capture the entire microbial diver-
sity present in the complex communities they represent. Although increasing the
library size is a worthy goal, existing libraries have provided useful insights into the
microbial ecology of several ecosystems in the absence of complete metagenome
coverage.

Small-insert libraries have a significant advantage over large insert libaries be-
cause to obtain small inserts the microorganisms can be lysed by harsh methods
that would shear DNA too much to obtain large inserts. Bead beating, for example,
extracts DNA from diverse Bacteria and Archaea, providing a good representa-
tion of the community. Small-insert libraries are not useful for capturing complex
pathways requiring many genes, but they provide an appropriate resource for dis-
covery of new metabolic functions encoded by single genes and for reconstructing
metagenomes (114, 115). The past reconstruction studies, however, did not take
advantage of the harsh lysis methods that are accommodated by small-insert li-
brary construction, instead using chemical lysis, which does not access DNA from
as diverse a group of organisms. Although both reconstruction studies reported
sequences from Archaea, which are notoriously difficult to lyse, the Sargasso Sea
study did not report members of the phyla containing only uncultured organisms,
so the effect of the DNA extraction on the diversity of DNA in the metagenomic
libraries method remains unclear.

The two metagenome reconstruction studies illustrate the difficulty in repre-
senting all of the members of a community in the library. For example, five species
were identified within the AMD metagenome and the two archaeal Ferroplasma
and Leptospirillum spp. were represented similarly in the metagenomic libraries,
although fluorescent in situ hybridization (FISH) showed that the Leptospirillum
spp. represented 85% of the community (114). The discrepancy between FISH
and genome-sequencing data suggests that there may be a cloning bias, which
is advantageous for this application because it led to high representation in the
library of minor members of the community. In the Sargasso Sea study (115),
the genomes of five species were represented with more than 3x coverage in the
libraries, but the seawater contains an estimated 1800 species, suggesting that at
least five of the species are far more abundant than others, illustrating the limitation
of metagenomics in providing access to rare community members.

As with any genomics study, gene product toxicity is a concern in metagenomic
analyses. However, a high-copy vector was used to construct the AMD metage-
nomic library (114), and the small number of gaps suggests little impact on the
composition of the library. High-copy vectors are useful because it is easier to ob-
tain sufficient DNA for further analysis, and for this reason, several plasmids that
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have copy number that can be modulated from 1 to 50 per cell have been developed
(44). These plasmids can be maintained at low copy during clone isolation to avoid
toxicity and then can be amplified for screening or plasmid isolation.

Identifying Sequences of Interest in
Large Metagenomic Libraries

The library size required to obtain sufficient coverage of the metagenome of even
the simplest community presents a significant challenge for screening. Brute-force
sequencing (114, 115) has provided tremendous insight into the libraries and the
communities from which they were derived, but the information gleaned from
sequencing is limited by the annotation of genes in the existing databases and the
available sequencing capacity. In the Sargasso Sea study, only 35% of the genes
identified had significant sequence similarity to genes in the public databases.
Functional screening has the potential to identify interesting genes that would
not be recognizable based on their sequences, but sequence-based screening can
identify sequences that would not be expressed in the host species carrying the
library. A combination of sequence-based methods and functional screening is
critical to advancing the field because neither can define the full diversity of gene
function in the libraries. High-throughput methods are needed to identify clones
carrying functionally active genes, phylogenetic anchors, and novel genes.

FUNCTIONAL SCREENING Advances in screening for active clones will increase
the knowledge mined from metagenomic libraries. Key approaches will include
new selections that facilitate identification of active clones from among millions of
clones. Another productive approach is to construct reporter fusions that respond
to expression of the genes of interest. If clones expressing the reporter can be
identified rapidly by selection for antibiotic resistance or fluorescence-activated
cell sorting, then libraries of sufficient size to represent the diversity of a natu-
ral environment could be screened. Implementation of such screens will provide
comprehensive functional information that will complement complete sequencing
of the metagenome.

SEQUENCE-BASED SCREENING Screening libraries for genes of interest using
primers or probes based on conserved sequences identifies homologues of known
genes. This has proved effective to identify phylogenetic anchors and genes en-
coding enzymes with highly conserved domains (81). A challenge associated with
screening libraries for clones carrying phylogenetic anchors is detecting the an-
chor on the cloned DNA without detecting the homologue in the chromosome of
the host cell. This can be circumvented by using a vector with high or inducible
copy number (44). When the cloned gene is in 50-fold excess to the chromosomal
copy, the signal is sufficient to detect. Alternatively, “terminator PCR” can be used
to block amplification of the host cell’s homologue. Terminator PCR was used to
identify clones carrying 16S rRNA genes, and terminator oligonucleotides specific
for the E. coli 16S rRNA gene prevented detection of the host cell genes (63, 96).
Finally, libraries can be screened with taxon-specific oligonucleotide probes and
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PCR primers for 16S rRNA genes of interest that will not detect the E. coli genes
(116).

New approaches are directed toward identifying sequences that are unique to un-
cultured microorganisms or those specific to a particular environment. These meth-
ods involve profiling clones with microarrays that identify previously unknown
genes in environmental samples (107), subtractive hybridization to eliminate all
sequences that hybridize with another environment, or subtractive hybridization
to identify differentially expressed genes (35), and genomic sequence tags (28).
These methods will enhance the efficiency of screening and aid in identifying
minor components in communities and genes that define community uniqueness.

INTEGRATING METAGENOMICS AND COMMUNITY
ECOLOGY

Metagenomics is a powerful approach for exploring the ecology of complex mi-
crobial communities. Its power will be realized when it is integrated with classical
ecological approaches and efforts to culture previously unculturable microorgan-
isms, which will likely be facilitated by clues about the physiology of the uncultured
microorganisms derived from metagenomic analysis. Microscopy and stable iso-
tope analysis are two approaches that will be particularly informative when linked
to metagenomics.

Microscopy

Metagenomics complements direct observation of microorganisms in situ with
FISH (1), RING-FISH (128), and FISH-MAR (62). Fluorescent in situ hybridiza-
tion (FISH) is commonly used in microbial ecology studies to visualize microor-
ganisms that contain rRNA that hybridizes with a fluorescently labeled probe, most
often directed toward the 16S rRNA gene. Until recently, FISH has been limited
to detection of highly expressed genes, such as the 16S rRNA genes, because
it detects abundant RNA and not single-copy genes. To overcome this limita-
tion, Zwirglmaier et al. (128) described an adaptation of FISH called RING-FISH
(recognition of individual genes-FISH) that facilitates visualization of plasmid
or chromosomal genes in situ by increasing the sensitivity of detection. Another
variation on FISH is to link it with microautoradiography to identify taxons that
utilize particular substrates in natural microbial communities (40, 62, 76). Further
augmentation of metagenomics with microscopy that can monitor genes, gene ex-
pression, and environmental conditions on a microscale will provide new insights
into the workings of microbial communities.

Stable Isotopes

The use of stable isotopes to understand cycling of elements in microbial com-
munities presents a singular opportunity in metagenomics. Members of communi-
ties fed substrates labeled with stable carbon or nitrogen isotopes incorporate the
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TABLE 4 Bacterial phyla represented in metagenomic libraries

Candidate bacterial phyla
Bacterial phyla with cultured membersa (no cultured representatives)

Acidobacteria
∗

(63, 85, 96) ABY1
Actinobacteria (63, 115) BD1-5 group

Aquificae BRC1

Bacteroidetes (63, 96, 111, 115) Guaymas1

Caldithrix Marine Group A

Chlamydiae NC10

Chlorobi (115) NKB19 (63)

Chloroflexi
∗

(115) OP1

Chrysiogenes OP3

Coprothermobacter OP5

Cyanobacteria (111, 115) OP8

Deferribacteres OP9
Deinococcus-Thermus (115) OP10 (63)

Desulfurobacterium OP11
∗

Dictyoglomus OS-K

Fibrobacteres (111) SBR1093

Firmicutes (96, 115) SC3

Fusobacteria (115) SC4

Gemmatimonadetes
∗

(63) Termite Group 1

Nitrospira (114) TM6

Planctomycetes
∗

(63) TM7

Proteobacteria (63, 96, 111, 115) VadinBE97

Spirochaetes (115) WS2

Synergistes WS3 (63)

Thermodesufobacteria WS5

Thermotogae WS6

Verrucomicrobia
∗

(63, 111)

aThe phylum names reviewed by Rappé & Giovannoni (90) are listed alphabetically. Highlighted text and references
indicate bacterial phyla for which at least one clone within a metagenomic library has been reported; phylogenetic
anchors (usually 16S rRNA) provide evidence of these phyla within metagenomic libraries.
∗
Indicates phyla that Hugenholtz et al. (54) or Rappé & Giovannoni (90) noted as particularly abundant in

environmental samples but underrepresented in culture.
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isotopes into their DNA. Building metagenomic libraries from such communities
can be used either to determine which community members are metabolically ac-
tive (using a labeled substrate such as glucose, which can be metabolized by many
organisms) or which utilize the labeled substrate (using a specialized substrate,
such as an environmental pollutant). The DNA from the fraction of the community
that used the labeled substrate will contain DNA with the stable isotope, making it
separable from unlabeled DNA by density centrifugation. Metagenomic libraries
and 16S rRNA gene libraries can be constructed with the labeled DNA to enrich
for genes associated with the active species (71, 72, 74, 75, 86–88). Innovative
approaches such as these will advance metagenomic analysis to the next level,
linking phylogeny and function more precisely.

CONCLUDING REMARKS

Constructing metagenomic libraries captures the phylogenetic and genetic diver-
sity in environmental samples. Clones derived from one third of the 52 bacterial
phyla have been reported, including representatives of several candidate phyla
and most of the phyla that are particularly abundant in environmental samples but
underrepresented by cultured isolates (Table 4). The assessment of phylogenetic
diversity in metagenomic libraries underestimates the biodiversity because a small
proportion of clones contain phylogenetic anchors, and the phylogenetic represen-
tation of very few libraries has been characterized. The genetic potential of the
libraries has only begun to be tapped. The small molecules and enzymes already
discovered indicate the potential of metagenomics to mine the environment for
fundamental knowledge and products for biotechnology. But effective mining will
require high-throughput functional screens and selections and rapid methods for
identifying sequences of interest. The advances in sequencing technology make it
possible to accumulate vast amounts of DNA sequence, which has proved a pow-
erful source of discovery, but more directed methods will lead to larger collections
of genes of a particular type or function. Future advances in understanding the dif-
ferences among communities or environments will be derived from “comparative
metagenomics” in which libraries prepared from different sites or at different times
can be compared. Our knowledge of 1% of the microbial world through culturing
may be predictive of much that we will find among the uncultured organisms, but
abundant surprises await us in this unknown world.

The Annual Review of Genetics is online at http://genet.annualreviews.org
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