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Rarefaction is currently the best approach to control for uneven 
sequencing effort in amplicon sequence analyses

Patrick D. Schloss1
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ABSTRACT Considering it is common to find as much as 100-fold variation in the 
number of 16S rRNA gene sequences across samples in a study, researchers need 
to control for the effect of uneven sequencing effort. How to do this has become a 
contentious question. Some have argued that rarefying or rarefaction is “inadmissible” 
because it omits valid data. A number of alternative approaches have been developed to 
normalize and rescale the data that purport to be invariant to the number of observa­
tions. I generated community distributions based on 12 published data sets where I 
was able to assess the ability of multiple methods to control for uneven sequencing 
effort. Rarefaction was the only method that could control for variation in uneven 
sequencing effort when measuring commonly used alpha and beta diversity metrics. 
Next, I compared the false detection rate and power to detect true differences between 
simulated communities with a known effect size using various alpha and beta diver­
sity metrics. Although all methods of controlling for uneven sequencing effort had an 
acceptable false detection rate when samples were randomly assigned to two treatment 
groups, rarefaction was consistently able to control for differences in sequencing effort 
when sequencing depth was confounded with treatment group. Finally, the statistical 
power to detect differences in alpha and beta diversity metrics was consistently the 
highest when using rarefaction. These simulations underscore the importance of using 
rarefaction to normalize the number of sequences across samples in amplicon sequenc­
ing analyses.

IMPORTANCE Sequencing 16S rRNA gene fragments has become a fundamental tool 
for understanding the diversity of microbial communities and the factors that affect their 
diversity. Due to technical challenges, it is common to observe wide variation in the 
number of sequences that are collected from different samples within the same study. 
However, the diversity metrics used by microbial ecologists are sensitive to differences 
in sequencing effort. Therefore, tools are needed to control for the uneven levels of 
sequencing. This simulation-based analysis shows that despite a longstanding contro­
versy, rarefaction is the most robust approach to control for uneven sequencing effort. 
The controversy started because of confusion over the definition of rarefaction and 
violation of assumptions that are made by methods that have been borrowed from other 
fields. Microbial ecologists should use rarefaction.

KEYWORDS microbial ecology, bioinformatics, amplicon sequencing, 16S rRNA gene 
sequencing, microbiome, data science

T he ability to generate millions of 16S rRNA gene amplicon and metagenomic 
sequence reads has allowed researchers to multiplex multiple samples on the same 

sequencing run by pooling separate PCRs that can be deconvoluted later based on index 
(aka barcode) sequences that are embedded into the sequence of the PCR primers (1–3). 
Unfortunately, it is common to observe variation in the number of sequence reads from 

Month XXXX  Volume 0  Issue 0 10.1128/msphere.00354-23 1

Editor Katherine McMahon, University of Wisconsin-
Madison, Madison, Wisconsin, USA

Address correspondence to Patrick D. Schloss, 
pschloss@umich.edu.

The author declares no conflict of interest.

See the funding table on p. 18.

Received 27 June 2023
Accepted 18 December 2023
Published 22 January 2024

Copyright © 2024 Schloss. This is an open-access 
article distributed under the terms of the Creative 
Commons Attribution 4.0 International license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
13

 F
eb

ru
ar

y 
20

24
 b

y 
65

.1
83

.1
70

.1
85

.

https://crossmark.crossref.org/dialog/?doi=10.1128/msphere.00354-23&domain=pdf&date_stamp=2024-01-22
https://doi.org/10.1128/msphere.00354-23
https://creativecommons.org/licenses/by/4.0/


each sample vary by as much as 100-fold (e.g., see Fig. S1). This occurs because pooling 
of DNA from multiple PCRs is fraught with numerous opportunities for random 
sampling errors to compound leading to a skewed distribution. Aside from developing 
better methods of pooling DNA, the question of how to control for uneven sequencing 
effort in microbial ecology studies has become controversial.

The practice of rarefaction has been commonly used in ecology for more than 50 
years as a tool to control for uneven sequencing effort across experimental replicates 
(4, 5). Microbial ecologists have used it to compare 16S rRNA gene sequence data for 
the past 25 years (6–8). With rarefaction, the investigator selects a desired threshold of 
sequencing effort and removes any samples below that threshold. They then randomly 
select that many sequences, without replacement from each sample. Based on the 
observed sequence counts, the researcher can then calculate alpha diversity metrics 
including richness and diversity indices or beta diversity metrics such as a Jaccard or 
Bray-Curtis dissimilarity index. I refer to this single sampling as a subsample; this method 
is implemented as the sub.sample function in mothur (9) and the rrarefy function in the 
vegan R package (10). Rarefaction repeats the subsampling a large number of times (e.g., 
100 or 1,000 times) and calculates the mean of the alpha or beta diversity metric over 
those subsamplings; rarefaction is implemented in mothur using the summary.single 
and dist.shared functions (9) and with the vegan R package using the rarefy or avgdist 
functions (10). Rarefaction effectively tells a researcher what an alpha or beta diversity 
metric would have been for a collection of samples if they were all sequenced to the 
same depth. Although a closed form equation exists to calculate the expected richness 
(5), it is computationally easier to empirically calculate richness and other alpha and beta 
diversity metrics by rarefaction.

In 2014, McMurdie and Holmes (11) announced that “rarefying” of microbial 
community data was “statistically inadmissible” because it omits valid data. In their 
simulations, they observed that rarefying reduced the statistical power to correctly 
cluster samples into the same treatment groups based on beta diversity metrics. I 
have recently shown that their analysis had a number of important problems (12). 
First, although the detail was lost on many subsequent researchers, they did not 
describe rarefaction. Instead, they described rarefying as a single subsampling of an 
operational taxonomic unit (OTU) abundance table whereas rarefaction repeats the 
subsampling step many times. Furthermore, their simulations penalized the rarefied data 
by removing 15% of the samples but did not remove those samples when considering 
their other methods. They also evaluated the accuracy of clustering samples using a 
clustering algorithm that performed worse for rarefied data. According to my reanalysis 
of rarefaction using their original simulation framework, but using all of the samples, 
rarefaction outperformed the other normalization methods they described for both 
alpha and beta diversity metrics (12). Others have also critiqued the original work (13).

Since McMurdie and Holmes published their simulations, others have developed 
alternative approaches to control for uneven sequencing effort in amplicon sequencing 
studies. For alpha diversity metrics, Willis used overly simplistic data sets to demon­
strate that one could estimate the richness for each sample in a data set and use 
those values for statistical comparisons (14). Non-parametric estimators of the minimum 
richness in a community and diversity (15–17) and parametric estimators of richness 
(18) have been used in microbial ecology studies. One non-parametric approach, iNEXT, 
combines rarefaction on samples more than a threshold number of sequences and 
extrapolation on samples below the threshold (17). This method has become popular in 
traditional ecology studies, but has not been widely used among microbial ecologists. 
For beta diversity metrics, at least four approaches have been pursued as alternatives to 
rarefaction. First, one could use relative abundance values where the observed number 
of sequences in an OTU is divided by the total number of sequences in the sample (19). 
Second, normalization strategies have been developed where the relative abundance is 
multiplied by the size of the minimum desired sequencing effort and fractional values 
are reapportioned to the OTUs to obtain integer values (20, 21). Third, a variety of center 
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log-ratio methods have been developed where the compositional nature of the OTU 
counts is removed and used to calculated Euclidean distances (aka Aitchison distances) 
(19, 21–24). This strategy is purported to control for uneven sequencing effort (23, 25); 
however, some have noticed that this feature breaks down under certain conditions 
(26). Finally, variance stabilization transformations have been recommended to generate 
values that can be used to calculate Euclidean distances (11).

The ongoing controversy over the use of rarefaction and the recent development 
of alternative strategies to control for uneven sequencing effort caused me to ques­
tion how these methods compared to each other using a simulation framework that 
overcame the issues with the McMurdie and Holmes study (11). My analysis included 
16S rRNA gene sequence data from 12 diverse environments (Table 1; Fig. S1). The 
sequences were assigned to OTUs using a standard pipeline and their frequencies and 
the number of sequences found in each sample were used to generate simulated 
communities and treatment effects. For each data set and simulation, 100 replicate 
data sets were generated and used as input to each of the strategies for controlling for 
uneven sequencing effort. My overall conclusion was that rarefaction outperformed the 
alternative strategies.

RESULTS

Without rarefaction, metrics of alpha diversity are sensitive to sequencing 
effort

To test the sensitivity of various approaches of measuring alpha diversity to sequencing 
effort, I generated null models using OTU counts and sequencing depths from 12 studies. 
Under a null model, each community from the same data set would be expected to 
have the same alpha diversity regardless of the sequencing effort. I measured the 
richness of the communities in each data set without any correction, using scaled ranked 
subsampling (SRS) normalized OTU counts, with estimates based on non-parametric 
and parametric approaches, and using rarefaction (e.g., Fig. S2). For each data set, all 
of the approaches, except for rarefaction and possibly the size-based iNEXT estimates, 
showed a strong correlation between richness and the number of sequences in the 
sample (Fig. 1A). The size-based iNEXT estimates were correlated with sampling effort for 
the Marine and Soil data sets, which had fewer samples and more uniform sequencing 
depth distributions than the other data sets. Next, I assessed diversity using the Shannon 
diversity index and the inverse Simpson diversity index without any correction, using 
normalized OTU counts, non-parametric estimation, and rarefaction. The correlation 
between sequencing depth and the Shannon diversity metric was not as strong as it was 
for richness. The inverse Simpson diversity values was not sensitive to sampling effort 

TABLE 1 Summary of studies used in the analysisa

Data set (reference) Samples Total sequences Median sample size Mean sample size Range of sample sizes BioProject accession 
no.

Bioethanol (27) 95 3,970,972 16,014 41,799 3,690–356,027 PRJNA276052
Human (28) 490 20,828,275 32,452 42,506 10,439–422,904 PRJNA290926
Lake (29) 52 3,145,486 69,205 60,490 15,135–110,993 PRJNA255432
Marine (30) 7 1,484,068 213,091 212,009 132,895–256,758 PRJNA307596
Mice (3) 348 2,785,641 6,426 8,004 1,804–30,311 PRJNA531928
Peromyscus (31) 111 1,545,288 12,393 13,921 4,454–33,502 PRJNA254334
Rainforest (32) 69 936,666 11,464 13,574 4,880–37,403 PRJEB21491
Rice (33) 490 22,623,937 43,399 46,171 2,777–192,200 PRJNA255789
Seagrass (34) 286 4,135,440 13,538 14,459 1,830–45,076 PRJNA350672
Sediment (35) 58 1,151,389 17,606 19,851 7,686–67,763 PRJNA362622
Soil (36) 18 932,563 50,487 51,809 46,622–58,935 PRJEB10725
Stream (37) 201 21,017,610 90,621 104,565 8,931–394,419 PRJNA323602
aFor all studies, when rarefaction was used, the number of sequences used from each data set was the size of the smallest sample. A graphical representation of the 
distribution of sample sizes for each data set and the samples that were removed from each data set are provided in Fig. S1. This table is similar to Table 1 from reference 38.
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(Fig. 1A). The alpha-diversity metrics calculated with rarefaction consistently demonstra­
ted a lack of sensitivity to sequencing depth.

FIG 1 Rarefaction eliminates the correlation between sequencing depth and alpha diversity (A) and between differences in sequencing depth and beta 

(B) diversity metrics when using null community models. Examples of the relationship between different metrics and methods for controlling for uneven 

sequencing effort are provided in Fig. S2 and S3 for alpha and beta diversity metrics, respectively. Each point represents the mean of 100 random null community 

models; the standard deviation was smaller than the size of the plotting symbol.
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Without rarefaction, metrics of beta diversity are sensitive to sequencing 
effort

To test the sensitivity of various approaches of measuring beta diversity to sequencing 
effort, I used the same null models used for studying the sensitivity of alpha diversity. 
Under a null model, the ecological distance between any pair of samples would be 
the same regardless of the difference in the number of sequences observed in each 
sample (e.g., Fig. S3). First, I calculated the Jaccard distance coefficient between all pairs 
of communities within a data set. The Jaccard distance coefficient is the fraction of 
OTUs that are unique to either community and does not account for the abundance 
of the OTUs. Jaccard distances were calculated using the uncorrected OTU counts, 
with rarefaction, relative abundances, and following normalization using cumulative 
sum scaling (CSS) and SRS. Only the distances calculated with rarefaction showed a 
lack of sensitivity to sequencing effort (Fig. 1B). Second, I analyzed the sensitivity of 
the Bray-Curtis distance coefficient, which is a popular metric that incorporates the 
abundance of each OTU. Similar to what I observed with the Jaccard coefficient, only 
the data normalized with rarefaction showed a lack of sensitivity to sequencing effort 
(Fig. 1B). Third, I calculated the Euclidean distance on raw OTU counts where the central 
log-ratio (CLR) was calculated (i.e., Aitchison distances) by adding a pseudo-count of one 
to all OTU counts prior to calculating the CLR (One CLR), adding a pseudo-count of one 
divided by the total number of sequences obtained for the community (Nudge CLR), 
imputing the value of zero counts (Zero CLR), and using CLR on non-zero counts followed 
by matrix completion on zero counts (robust principle components analysis [PCA]). The 
Aitchison distances were all strongly sensitive to sequencing effort (Fig. 1B). Finally, I 
used the variance-stabilization transformation (VST) from DESeq2 prior to calculating 
Euclidean distances. Again, there was a strong sensitivity to sequencing effort (Fig. 1B). 
Although use of Euclidean distances is not advised with raw or rarefaction-normalized 
count data in ecology (39), Euclidean distances calculated with rarefaction were not 
sensitive to sequencing effort. Across each of the beta diversity metrics and approaches 
used to account for uneven sequencing effort and sparsity, rarefaction was the least 
sensitive approach to differences in sequencing effort.

Rarefaction limits the detection of false positives when sequencing effort 
and treatment group are confounded

Next, I investigated the impact of the various strategies and metrics on falsely detecting 
a significant difference using the the same communities generated from the null model 
in the analysis of alpha and beta diversity metrics. To test for differences in alpha and 
beta diversity, I used the non-parametric Wilcoxon test and non-parametric permutation-
based multivariate analysis of variance (PERMANOVA). First, I employed an unbiased null 
treatment model to measure the false detection rate, which should not have meaning­
fully differed from 5%. Indeed, for each data set and alpha and beta diversity metric and 
strategy for accounting for uneven sequencing, approximately 5% of the tests yielded 
a significant result (Fig. 2). Second, I employed a biased null treatment model where 
the treatment group was confounded with the number of sequences in each sample 
such that the 50% of samples with the least sequencing effort were in one treatment 
group and the others were in another treatment group (Fig. S4). Under this model, only 
the data normalized with rarefaction consistently resulted in a 5% false positive rate for 
alpha and beta diversity metrics. I then used a less severe bias where the smallest 5% 
of samples were assigned to one treatment group and the largest 5% were assigned to 
another; the other samples were randomly assigned to both treatment groups. Although 
the sensitivity of the false positive rate to the level of confounding varied across methods 
of quantifying alpha and beta diversity, rarefaction and the iNEXT size-based estimates 
for alpha diversity were the only methods to consistently control the false positive rate 
(Fig. 3). These results aligned with the observed sensitivity of alpha and beta diversity 
metrics to sequencing effort and underscore the value of rarefaction.
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Rarefaction preserves the statistical power to detect differences between 
treatment groups

To assess the impact of different approaches to control for uneven sequencing effort, I 
performed two additional simulations. In the first simulation, I implemented a skewed 
abundance distribution model to create two treatment groups for each data set that 
were each populated with half of the samples each with the same number of sequences 
as the samples had in the observed data. The two treatment groups varied in their 
structure such that one had the same abundances as the null distribution above and 
the other had 10% of its OTUs randomly selected to increase their counts by 5%. The 
power to detect differences in richness between the two simulated treatment groups by 
all approaches was low (Fig. 4A). This was likely because the approach for generating the 
perturbed community did not necessarily change the number of OTUs in each treatment 
group; the differences primarily affected the distribution of the sequences across OTUs. 

FIG 2 The risk of falsely detecting a difference between treatment groups drawn from a null model does not meaningfully 

vary from 5%, regardless of approach for controlling for uneven sequencing depth. Samples were randomly assigned to 

different treatment groups. To calculate the false detection rate, data sets were regenerated 100 times and differences in alpha 

diversity were tested using a Wilcoxon test (A) and differences in beta diversity were tested using PERMANOVA (B) at a 5% 

threshold. The false positive rate was the number of times a data set yielded a significant result.
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Regardless, the simulations testing differences in richness using the Rice and Stream data 
sets had the greatest power when the richness data were calculated with rarefaction. 
To explore this further, a richness-adjusted community model was created by randomly 

FIG 3 The risk of falsely detecting a difference between treatment groups drawn from a null model did not meaningfully vary from 5% when data are 

normalized by rarefaction when sequencing depth was confounded with treatment group. Samples were assigned to different treatment groups so that the 

smallest 5% of samples were assigned to one treatment group and the largest 5% to another; the other 90% of samples were randomly assigned to both 

treatment groups. To calculate the false detection rate, data sets were regenerated 100 times and differences in alpha diversity were tested using a Wilcoxon test 

(A) and differences in beta diversity were tested using PERMANOVA (B) at a 5% threshold. The false positive rate was the number of times a data set yielded a 

significant result.
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selecting and removing 3% of the OTUs from a null model. As suggested by the first 
simulation, the richness data calculated with rarefaction consistently had the highest 
statistical power among the approaches used to measure richness followed by the 
iNEXT size-based estimates (Fig. 5). Returning to simulations where treatment groups 

FIG 4 The ability to detect true differences in treatment groups for alpha (A) and beta (B) diversity metrics is greatest when communities differing in the relative 

abundance of their OTUs are normalized by rarefaction. For each data set, samples were randomly assigned to one of two community distributions where the 

abundance of OTUs differed. To calculate the power for each data sets, data sets were regenerated 100 times and differences in alpha diversity were tested using 

a Wilcoxon test (A) and differences in beta diversity were tested using PERMANOVA (B) at a 5% threshold. The power was the number of times a data set yielded a 

significant result.
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varied in their structure, the power to detect differences in Shannon diversity was the 
lowest when using raw relative abundances than when using the other methods (Fig. 
4A and 5). When testing for differences in the inverse Simpson diversity index, the the 
difference between rarefaction and the other methods was negligible (Fig. 4A and 5). 
For tests of beta diversity, I found that rarefaction was the most reliable approach to 
maintain statistical power to detect differences between two communities (Fig. 4B). 
Among the tests using the Jaccard and Bray-Curtis metrics, raw count data and CSS 
normalized data had little power relative to using rarefaction, relative abundance, and 
SRS to normalize the uneven sequencing depths. The differences in power between 
counts normalized with rarefaction, relative abundance, and SRS data were small, but 
if there were differences, the power obtained using rarefaction was greater than the 
other methods. Among the tests using Euclidean distances, using raw counts and CLR 
and DESeq2 transformed data had little power relative to the distances calculated 
using rarefaction and relative abundances. This power-based analysis of the simulated 
communities using different methods of handling uneven sample sizes demonstrated 
the value of rarefaction for preserving the statistical power to detect differences between 
treatment groups for measures of alpha and beta diversity.

Increased rarefaction depth reduces intra-sample variation in alpha and beta 
diversity

One concern with using rarefaction is the perceived loss of sequencing information 
when a large fraction of data appears to be removed when the community with the 
greatest sequencing depth is sampled to the size of the community with the least 
(e.g., the smallest sample in the Bioethanol data set had 1.04% of sequences that were 
in the largest sample). To assess the sensitivity of alpha and beta diversity metrics to 
rarefaction depth, I again used the data set generated using the null models, but used 
rarefaction with each community to varying sequencing depths (Fig. 6). The richness 
values increased with sequencing effort as rare OTUs would continue to be detected. 
In contrast, the Shannon diversity and Bray-Curtis values plateaued with increased 
sequencing effort. This result was expected since increased sequencing would lead to 
increased precision in the measured relative abundance of the OTUs. Next, I measured 
the coefficient of variation (i.e., the mean divided by the standard deviation) between 
samples for richness, Shannon diversity, and Bray-Curtis distances. Although the mean 

FIG 5 The ability to detect true differences in treatment groups for alpha diversity metrics is greatest when sequencing 

depths from communities differing in richness are normalized by rarefaction. For each data set, samples were randomly 

assigned to one of two community distributions where one distribution contained a subset of OTUs found in the other. To 

calculate the power for each data set, data sets were regenerated 100 times and differences in alpha diversity were tested 

using a Wilcoxon test (A) and differences in beta diversity were tested using PERMANOVA (B) at a 5% threshold. The power was 

the number of times a data set yielded a significant result.
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richness appeared to increase unbounded with sequencing effort, the coefficient of 
variation for each data set was relatively stable. In general, the coefficient of variation 
increased slightly with sequencing depth only to decline once smaller samples were 
removed from the analysis at higher sequencing depths. Interestingly, the coefficient 
of variation between Shannon diversity values decreased toward zero with increased 
sequencing effort, and the coefficient of variation between Bray-Curtis distances tended 
to increase slightly for samples where the standard deviation did not decrease as quickly 
as the mean distance between samples. Regardless, the coefficients of variation were 
relatively small. This analysis indicates that there are benefits to increased sequencing 
depths.

Most studies have a high level of sequencing coverage

To explore the concern over loss of sequencing depth further, I calculated the Good’s 
coverage for the observed data. The median coverage for each data set ranged between 
89.4% and 99.8% for the Seagrass and Human data sets, respectively (Fig. 7). When I 
used a rarefaction threshold with each data set at the size of the smallest community in 
the data set, with the exception of the Seagrass, Rice, and Stream data sets, the median 
coverage with rarefaction was still greater than 90% (see the box plots in Fig. 7). These 
results suggest that most studies had a level of sequencing coverage that aligned with 
the diversity of the communities. Next, I used the null model for each data set to ask how 
much sequencing effort was required to obtain higher levels of coverage. To obtain 95% 
and 99% coverage, an average of 3- and 101-fold more sequence data were estimated to 
be required than was required to obtain 90% coverage, respectively (Fig. 7). As suggested 
by the simulated coverages curve in Fig. 7, these estimates are conservative. Regardless, 

FIG 6 The mean and coefficient of variation for richness, Shannon diversity, and Bray-Curtis dissimilarity values calculated 

by rarefaction vary with sequencing depth. For each data set, a null community distribution was created and samples were 

created to have the same sequencing depth as they did originally. The placement of the plotting symbol indicates the size of 

the smallest sample. Results are only shown for sequencing depths where a data set had five or more samples.
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the sequencing effort required to achieve higher sequencing depth would likely limit 
the number of samples that could be sequenced when controlling for costs. Although 
it may be disconcerting to use rarefaction to normalize to a sequencing depth that is 
considerably lower than that obtained for the best sequenced community in a data set, 
sequencing coverage for many environments is probably adequate even at the lower 
sequencing depth. Of course, regardless of the concerns surrounding the choice of 
the rarefaction depth, the results throughout this study demonstrate that rarefaction is 
necessary to avoid reaching incorrect inferences.

DISCUSSION

Over the past decade, the question of whether to use rarefaction with microbial 
community sequence data has become controversial. The analyses I presented here 
strongly indicate that rarefaction is necessary to control for uneven sequencing effort 
when comparing communities based on alpha and beta diversity indices. Compared 
to all other methods, rarefaction was the most consistent method for removing the 
correlation between sequencing depth and alpha or beta diversity metrics even when 
the sequencing depth varied by as much as 97-fold across samples. I showed that 
this correlation could lead falsely detecting differences between treatment groups 
if sequencing depth and sequencing effort are confounded. The correlation with 
sequencing effort leads to an artificial increase in the variation between samples and 

FIG 7 Most data sets are sequenced to a level that provides a high level of coverage. Each plotting symbol represents the 

observed Good’s coverage for a different sample in each data set. The box and whisker plot indicates the range of coverage 

values when the observed community data were normalized by rarefaction to the size of the least sequenced sample. The 

smoothed line indicates the simulated coverage for varying levels of sequencing effort when a null community is generated 

from the observed data.
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a reduced power to detect true differences in alpha and beta diversity. For these reasons, 
rarefaction is a valuable tool to control for uneven sequencing effort until improved 
statistical procedures are developed or it becomes possible to more evenly distribute 
sequencing effort across samples.

Historically, the primary alternative to rarefaction for measuring alpha diversity is to 
estimate the metric using non-parametric or parametric models with raw counts and 
to then compare the estimates (7, 14). My results demonstrate that such approaches 
are limited for several reasons. First, non-parametric richness estimates such as ACE 
and Chao1 are sensitive to sequencing effort. Therefore, these estimators do not, in 
practice, remove the effects of sequencing effort. Second, parametric approaches, such 
as those implemented in the breakaway R package, generate confidence intervals that 
are likely to include the true richness and theoretically shrink with increased sequencing 
effort. Yet for most samples, the confidence intervals around the estimates are too 
wide to be meaningful, again leading to an inability to remove the effects of sequenc­
ing effort. Third, it has become an increasingly common practice for researchers to 
remove sequences that are rare in a sample (e.g., those that appear once). Although 
that approach was not taken in this study, removing rare sequences would skew the 
distribution of sequences and OTUs leading to a distortion of the measurement of 
alpha diversity (38). The effects of removing rare sequences would vary across samples 
depending on the number of sequences in each sample. One interesting result of 
this analysis was the demonstration that as metrics that depend less on rare taxa are 
used, the effect of uneven sequencing effort was reduced. For example, richness counts 
a sequence appearing once as much as sequence appearing 1,000 times, while the 
Shannon diversity index places more emphasis on the more abundant sequence, and 
the inverse Simpson index even more. Although normalizing communities to a common 
number of sequences is also suggested (e.g., SRS normalization) to control for uneven 
sequencing effort, the current analysis indicates that its performance does not meet 
that of rarefaction. Because alpha diversity metrics are so sensitive to sampling effort 
and residual PCR and sequencing artifacts, it is important to treat their values on a 
relative (e.g., 5% difference) rather than an absolute basis (e.g., difference of 48 OTUs). 
Rarefaction is an effective and consistent approach to control for uneven sequencing 
effort.

Use of relative abundances, normalized counts, variance stabilizing transformations, 
and centered log ratios have each been recommended as more robust alternatives to 
rarefaction. Again, the only approach that consistently removed the effects of uneven 
sequencing effort across alpha and beta diversity analyses was rarefaction. Many of the 
alternative methods have been borrowed from differential gene expression analysis. 
Unfortunately, there is an important but under appreciated difference between gene 
expression and community data. This is the interpretation of unobserved data. For 
gene expression analysis in a single organism, the lack of any sequencing data for a 
gene would indicate that although the gene was present, its expression was below 
the limit of detection. Sequencing the same organism under multiple conditions would 
not lead to a seemingly unbounded number of genes in the organisms. Rather, the 
number of genes has a definite limit that is knowable from the genome sequence. With 
microbiome data, an unobserved sequence could mean that the organism was present, 
but below the limit of detection or that the organism was missing. Because we have yet 
to exhaustively sample any community in the same way we have sequenced a single 
genome, it is unreliable to impute the presence of all organisms. Yet, this is exactly what 
the variance stabilization transformation and most CLR techniques do. This analysis has 
demonstrated a clear correlation between distances calculated by these methods and 
sequencing effort. This result is at odds with the claims by others that the distances are 
scale invariant (23, 25). Again, rarefaction is the most effective and consistent approach 
to control for uneven sequencing effort when calculating beta diversity metrics.

Two common critiques of rarefaction are that the approach omits valid data and that 
the selection of rarefaction threshold is arbitrary (11). I disagree with both critiques. 
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All of the data are used to calculate the mean value of the metrics after repeatedly 
subsampling the data. When the data set is subsampled, every sequence has a random 
chance of being included in the calculated metric. When that subsampling is repeated a 
large number of times (e.g., 100 or 1,000) the risks of ignoring or oversampling rare taxa 
are mitigated. As for the second criticism, I would resist the claim that the selection of 
the rarefaction threshold is arbitrary. In practice, there is a tradeoff between sampling 
breadth and sequencing depth. Greater breadth will increase the statistical power to 
compare treatment groups and greater depth will increase the resolution to describe the 
communities. My personal process for selecting a rarefaction threshold involves looking 
for a natural break in the distribution of the number of sequences. For example, the 
Lake data set used in this study had a clear break around 10,000 sequences (Fig. S1). I 
would also consider what samples are below any threshold that I select. If there were 
critical samples below the threshold, I would either reduce the threshold or obtain more 
sequences from those samples. As shown in my analysis of Good’s coverage values, most 
studies obtain an ample level of coverage and would need to increase their sequencing 
depth by 10-fold to increase the coverage by several percentage points. In past work, I 
have favored increasing sampling breadth over sequencing depth.

An additional critique of rarefaction is that the variation between alpha diversity 
metrics shrinks as the rarefaction threshold decreases, which may compromise the 
power to detect differences between treatment groups. The iNEXT methods attempt to 
minimize this effect by estimating alpha diversity metrics for samples whose sequenc­
ing depth is below a threshold and using rarefaction on samples with a sequencing 
depth above that threshold (17). This threshold is set at either twice the size of the 
smallest sample (i.e., size-based) or by controlling for the coverage when the number of 
sequences in each sample is doubled. An example of this can be seen in Fig. S2 where 
richness values obtained by estimation are shown in gray and those by rarefaction are in 
black. While my data suggest that the size-based approach has promise for estimating 
alpha diversity, I found that it was not as consistent as rarefaction for smaller data sets 
where there was a narrow distribution in sequencing depths. This is likely because in 
these situations, the algorithm relies more on estimation than rarefaction.

The up to 100-fold difference in sample sizes is an unfortunate byproduct of how 
sequencing libraries are constructed. Researchers perform separate PCRs for each sample 
with unique index (aka, barcode) sequences that allow them to later assign sequences 
back to the samples that they came from. When the PCR products are pooled, efforts are 
often taken to pool the fragments in equimolar ratios using one of two approaches. First, 
they often will quantify the concentration of DNA from each PCR and then pool DNA in 
the desired amounts. Alternatively, they may use normalization plates where each well 
can hybridize a uniform amount of DNA that is then eluted and pooled. Clearly, both 
approaches have limitations that reduce the ability to truly achieve equimolar mixture. 
Although normalization procedures are expected to remove the relationship between 
sequencing depth and sample biomass (40), several recent studies have found a positive 
correlation (41, 42). Even in cases where there is no correlation, for some samples, it 
is common to co-amplify non-specific DNAs which are later removed during sequence 
processing (43). It is clear that better strategies are needed to reduce the variation in 
the number of sequences generated for each sample. Furthermore, it is important to 
keep in mind that because of residual sequencing errors, PCR artifacts, and incomplete 
sequencing, it is not possible to obtain absolute quantification of alpha or beta diversity 
values. Instead, comparisons of these values need to be made on a relative basis.

All simulations have weaknesses and should be interpreted with caution. Previous 
studies have reached different conclusions than I have drawn here and elsewhere 
(12). I believe that the differences are largely due to confusion over the differences 
in definitions of rarefaction, the types of analysis being used to test the effects of 
rarefaction, and the use of simulated and actual communities that represent extremes, 
which are rarely found in real studies. It is worth noting that others have also 
observed sequencing depth correlations with CLR-based distances, but indicated that 
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the correlation was less than what was observed without rarefaction (e.g., see Fig. S3 
from reference 23). The simulated communities generated and analyzed in this study 
had the advantage of being designed with known properties including the alpha and 
beta diversity and their differences between treatment groups. Furthermore, I have 
used a wide array of alpha and beta diversity metrics and tests of significance that 
are commonly used in microbial ecology studies. The result is the conclusion that it is 
perfectly admissible and proper to use rarefaction with microbial community data. The 
alternative is to risk reaching unwarranted conclusions.

MATERIALS AND METHODS

Choice of data sets

The specific studies used in this study were selected because their data were publicly 
accessible through the Sequence Read Archive, the original investigators sequenced the 
V4 region of the 16S rRNA gene using paired 250 nt reads, and my previous familiarity 
with the data. The use of paired 250 nt reads to sequence the V4 region resulted in a 
near-complete twofold overlap of the V4 region resulting in high quality contigs with 
a low sequencing error rate (3). These data were processed through a standardized 
sequence curation pipeline to generate OTUs using the mothur software package (3, 9). 
OTUs were identified using the OptiClust algorithm to cluster sequences together that 
were not more than 3% different from each other (44).

Null community model

Null community models were generated such that within a data set, the number of 
sequences per sample and the number of sequences per OTU across all samples within 
the data set were the same as was observed in original. This model effectively generated 
statistical samples of a single community so that there should not have been a statistical 
difference between the samples. This model was implemented by randomly assigning 
each sequence in the data set to an OTU and sample while keeping constant the number 
of sequences per sample and the total “number of sequences in each OTU. This is 
a similar approach to that of the “IS” algorithm described by Ulrich and Gotelli (45). 
Because the construction of the null models was a stochastic process, 100 replicates were 
generated for each data set.

Null treatment models

I created unbiased and biased treatment models. In the unbiased model, samples were 
randomly assigned to one of two treatment groups. I created two biased treatment 
models. In the first, samples that had more than the median number of sequences for a 
data set were assigned to one treatment group and the rest were assigned to a second 
treatment group (see Fig. S4). In the second, samples whose sequencing depth where 
in the fifth percentile or lower were assigned to one treatment group while those in 
the 95% percentile or higher were assigned to another; the remaining samples were 
randomly assigned to either treatment group (see Fig. 3). Regardless of how the null 
treatment models were constructed, comparison of any diversity metric across the two 
treatment groups should have only yielded a significant result in 5% of the simulations 
when testing under a type I error (i.e., α) of 0.05.

Skewed abundance community model

In the skewed abundance community model, communities were randomly assigned to 
one of two simulated treatment groups. Communities in the first treatment group were 
generated by calculating the relative abundance of each OTU across all samples and 
using those values as the probability of sampling each OTU. This probability distribution 
was sampled, with replacement, until each sample had the same number of sequences 
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that it did in the observed data. Samples in the second treatment group were gener­
ated by adjusting the relative abundances of the OTUs in the first treatment group 
by increasing the relative abundance of 10% of the OTUs by 5%. These values were 
determined after empirically searching for conditions that resulted in a large fraction of 
the randomizations yielding a significant result across most of the studies. Sequences 
were sampled from the skewed community community until each sample had the same 
number of sequences that it did in the observed data. Under the skewed abundance 
community model, each sample represented a statistical sampling of two communities 
such that there should not have been a statistically significant difference within a 
treatment group, but there was between the treatment groups. Because the construction 
of the skewed abundance community model was a stochastic process, 100 replicates 
were generated for each data set.

Richness-adjusted community model

In the richness-adjusted community model, communities were randomly assigned to 
one of two simulated treatment groups. Communities in the first treatment group were 
generated by calculating the relative abundance of each OTU across all samples and 
using those values as the probability of sampling each OTU. This probability distribution 
was sampled until each sample had the same number of sequences that it did in the 
observed data. Samples in the second treatment group were generated by removing 3% 
of the OTUs from the data set and recalculating the relative abundance of the remaining 
OTUs. Sequences were sampled from the richness-adjusted community distribution, with 
replacement, until each sample had the same number of sequences that it did in the 
observed data. Under the richness-adjusted community model, each sample represented 
a statistical sampling of two communities such that there should not have been a 
statistically significant difference within a treatment group, but there was between the 
treatment groups. Because the construction of the richness-adjusted community model 
was a stochastic process, 100 replicates were generated for each data set.

Test of statistical significance

Statistical comparisons of alpha diversity metrics across the simulated treatment groups 
were performed using the non-parametric two-sample Wilcoxon test as implemented 
in wilcoxon.test in the stats base R package. This test was selected because the alpha 
diversity metrics tended to not be normally distributed and each data set required a 
different transformation to normalize the data. Comparisons of beta diversity metrics 
were performed using the adonis2 function from the vegan (v.2.6.2) R package (10). The 
adonis2 function implements a non-parametric multivariate analysis of variance using 
distance matrices (46). Throughout this study, I used 0.05 as the threshold for assessing 
the statistical significance of any P-values.

Power analysis

The parameters used to design the skewed abundance and richness-adjusted com­
munity models were set to impose a known effect size when using community 
data normalized by rarefaction. The statistical power to detect these differences was 
determined by calculating the P-value for each of 100 replicate simulated set of samples 
from each data set using the various alpha and beta diversity metrics. The percentage 
of tests that yielded a significant P-value was considered the statistical power (i.e., one 
minus the type II error) to detect the difference.

Alpha diversity calculations

Various strategies for handling uneven sequencing effort were evaluated to identify the 
best approach for calculating community richness and Shannon and inverse Simpson 
diversity indices. OTU counts were used as input to calculate sample richness and 
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Shannon and inverse Simpson diversity using mothur (9, 47). Shannon diversity was 
calculated as

Hsℎannon = − i = 1

Sobs niN lnniN
The Simpson diversity was calculated as

Dsimpson = ∑i = 1
Sobs ni ni − 1N N − 1

The inverse Simpson diversity was calculated as 1/Dsimpson. In both formulae, ni was 
the number of sequences in OTU i and N  was the number of sequences in the sample. 
Rarefaction of richness, Shannon diversity, and inverse Simpson diversity values were 
carried out in mothur. Briefly, mothur calculates each value on a random draw of the 
same number of sequences from each sample and obtains a mean value based on 1,000 
random draws. SRS was used to normalize OTU counts to the size of the smallest sample 
in each data set using the SRS R package (v.0.2.3) (20). Normalized OTU counts were used 
to calculate sample richness and Shannon and inverse Simpson diversity values using 
mothur. Data normalized by CSS were not reported for alpha diversity values since the 
relative abundances of the features do not change with the normalization procedure 
(21). The non-parametric bias-corrected Chao1 and ACE richness estimators (16) and a 
non-parametric estimator of the Shannon diversity (15) were calculated using raw OTU 
counts with mothur. The iNEXT R package was used to estimate richness and Shannon 
and inverse Simpson diversity metrics with default parameters in the estimateD function 
(v.3.0.0) (17). In the size-based approach, estimateD estimates alpha diversity at a level 
that is twice the size of the smallest sample, and in the coverage-based approach, it 
does so at a level that matches the smallest predicted coverage when the number of 
sequences in each sample is doubled. Parametric estimates of sample richness were 
calculated using the breakaway R package (v.4.7.9) (18). My analysis reports both the 
results from running default model selection procedure and the Poisson model. The 
default model selection returned either the Kemp, negative binomial, or Poisson model. 
Relative abundance data were not used to calculate alpha diversity metrics since the 
richness and evenness do not change from the raw data when dividing each sample by 
the total number of sequences in the sample.

Beta diversity calculations

Similar to the alpha diversity calculations, multiple approaches were used to control for 
uneven sequencing effort and calculate beta diversity. Raw and OTU counts were used 
for input to calculate the Jaccard, Bray-Curtis, and Euclidean dissimilarity indices using 
the vegdist function from the vegan R package (v.2.6.2) (10). The Jaccard index was 
calculated as

DJaccard = 1 − SABSA + SB − SAB
where SA and SB were the number of OTUs in samples A and B and SAB was the 

number of OTUs shared between the two samples. The Bray-Curtis index was calculated 
as

DBray − Curtis = 1 − ∑i = 1
ST nA, i − nB, iNA + NB

where nA, i and nB, i were the number of sequences observed in OTU i from samples A
and B, respectively. NA and NB were the total number of sequences in samples A and B, 
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respectively. ST was the total number of OTUs observed between the two samples. The 
Euclidean distance was calculated as

DEuclidean = 1 − i = 1

ST nA, i − nB, i 2
These metrics were calculated using the relative abundance of each OTU using the 

vegdist function from the vegan R package. The relative abundance was calculated as 
the number of sequences in the OTU (e.g., nA, i) divided by the total number of sequences 
in the sample (e.g., NA).

Beta diversity values generated with rarefaction were calculated using the avgdist 
function in vegan. Briefly, vegan’s avgdist function calculates each pairwise dissimilarity 
index after obtaining a random draw of the same number of sequences from each 
sample. After obtaining 100 random draws, it returns the mean value.

Three approaches were taken to normalize the number of sequences across samples 
within a data set. SRS and CSS were used to normalize raw OTU counts using the SRS 
(v.0.2.3) and metagenomeSeq (v.1.36.0) R packages, respectively (20, 21). The normal­
ized counts were then used to calculate Jaccard and Bray-Curtis dissimilarity indices. 
Finally, the VST, as implemented in the DESeq2 (v.1.34.0) R package, was used to 
normalize the data as described by McMurdie and Holmes (11, 48). Because the VST 
approach generated negative values, which are incompatible with calculating Jaccard 
and Bray-Curtis dissimilarity values, Euclidean distances were calculated instead.

Raw OTU counts were used to calculate CLR values for each OTU, which were then 
used to calculate Euclidean distances; such distances are commonly referred to as 
Aitchison distances. CLR abundances were calculated as

CLR nj = ln
xijg xj , . . . , ln xSTjg xj

where xij was the number of sequences observed for OTU i in sample j and g  was 
the geometric mean; xj was the count of the ST OTUs in sample j. Because the geometric 
mean is zero if any OTU is absent from a sample, the CLR is undefined when there are 
unobserved OTUs in a sample. To overcome this problem, I attempted four approaches. 
The first, One CLR, added a pseudo-count of 1 to the abundance of all OTUs (19, 21). 
The second, Nudge CLR, added a pseudo-count of 1 divided by the total number of 
sequences in a sample to each OTU in the sample (19, 24). The third, Zero CLR, imputed 
the value of the zeroes based on the observed data using the zCompositions (v.1.4.0.1) 
R package (49). The final approach, Robust PCA, calculated the CLR on non-zero counts 
and then used matrix completion to replace the zero counts; this was implemented using 
the rpca function in the Gemelli Python package (v.0.0.9) with default parameters (23). It 
was not possible to perform Robust PCA on the Rice, Seagrass, or Stream data sets since 
more than 250 GB of RAM was required; the other data sets required less than 16 GB of 
RAM.

Analysis of sequencing coverage

To assess the level of sequencing coverage, I calculated Good’s coverage (CGood) using 
mothur:

CGood = 100% × 1 − n1NT
where n1 was the number of OTUs with only one sequence in the sample and NT was 

the total number of sequences in the sample. Good’s coverage was calculated (i) using 
the observed OTU counts for each sample and data set, (ii) following rarefaction (1,000 
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iterations) of the observed OTU counts to the size of the smallest sample in each data set, 
and (iii) after rarefaction (1,000 iterations) of the null community distribution.

Reproducible data analysis

A complete reproducible workflow written in Snakemake (v.7.15.2) and Conda (v.4.12.0) 
computational environment can be obtained from the GitHub hosted git repository 
for this project (https://github.com/SchlossLab/Schloss_Rarefaction_mSphere_2024). 
This paper was written in R-flavored markdown (v.2.16) with the kableExtra (v.1.3.4) 
package. The mothur (v.1.47.0) and R (4.1.3) software packages were used for all 
analyses with extensive use of functions in the tidyverse metapackage (v.1.3.1). 
A preliminary version of this analysis was presented as the Rarefaction video ser­
ies on the Riffomonas Project YouTube channel (https://www.youtube.com/playlist?
list=PLmNrK_nkqBpJuhS93PYC-Xr5oqur7IIWf).
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