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ABSTRACT In 2014, McMurdie and Holmes published the provocatively titled “Waste 
not, want not: why rarefying microbiome data is inadmissible.” The claims of their 
study have significantly altered how microbiome researchers control for the unavoidable 
uneven sequencing depths that are inherent in modern 16S rRNA gene sequencing. 
Confusion over the distinction between the definitions of rarefying and rarefaction 
continues to cloud the interpretation of their results. More importantly, the authors 
made a variety of problematic choices when designing and analyzing their simulations. 
I identified 11 factors that could have compromised the results of the original study. I 
reproduced the original simulation results and assessed the impact of those factors on 
the underlying conclusion that rarefying data is inadmissible. Throughout, the design 
of the original study made choices that caused rarefying and rarefaction to appear 
to perform worse than they truly did. Most important were the approaches used to 
assess ecological distances, the removal of samples with low sequencing depth, and 
not accounting for conditions where sequencing effort is confounded with treatment 
group. Although the original study criticized rarefying for the arbitrary removal of valid 
data, repeatedly rarefying data many times (i.e., rarefaction) incorporates all the data. In 
contrast, it is the removal of rare taxa that would appear to remove valid data. Overall, 
I show that rarefaction is the most robust approach to control for uneven sequencing 
effort when considered across a variety of alpha and beta diversity metrics.

IMPORTANCE Over the past 10 years, the best method for normalizing the sequencing 
depth of samples characterized by 16S rRNA gene sequencing has been contentious. 
An often cited article by McMurdie and Holmes forcefully argued that rarefying the 
number of sequence counts was “inadmissible” and should not be employed. However, 
I identified a number of problems with the design of their simulations and analysis that 
compromised their results. In fact, when I reproduced and expanded upon their analysis, 
it was clear that rarefaction was actually the most robust approach for controlling for 
uneven sequencing effort across samples. Rarefaction limits the rate of falsely detect­
ing and rejecting differences between treatment groups. Far from being “inadmissible”, 
rarefaction is a valuable tool for analyzing microbiome sequence data.

KEYWORDS microbial ecology, 16S rRNA gene seqeuncing, microbiome, bioinformat­
ics, amplicon sequencing

M icrobiome studies that use amplicon sequencing to characterize multiple samples 
use PCR to amplify 16S rRNA gene fragments using primers with distinct barcodes 

or index sequences (1–3). These barcodes allow researchers to pool PCR products and 
then deconvolute the resulting sequence data based on the barcode sequences. Despite 
researchers’ best efforts to generate equimolar pools of PCR products, it is common 
to observe more than 10-fold variation in the number of sequences per sample (4). 
Researchers desire strategies to minimize uneven sequencing depth and thus need 
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methods to control for this unevenness in their analyses. Of course, uneven sampling 
effort is not unique to microbiome research and is a challenge faced by all 
community ecologists (5, 6). Common approaches to control for the effects of uneven 
sequencing depths include use of proportional abundance (i.e., relative abundance), 
scaling of counts, parameter estimation, and rarefaction (7–23).

In 2014, Paul McMurdie and Susan Holmes published “Waste not, want not: why 
rarefying microbiome data is inadmissible” (WNWN) in PLOS Computational Biology (24). 
The provocative title attempts to express the idea that if one does not waste resources, 
then he or she will not be found wanting the resource when it is needed. Applied to their 
study, it implies that rarefying data arbitrarily discards samples and sequence data in the 
subsampling step, leading to a loss of statistical power. Their article has had a significant 
impact on the approaches that microbiome researchers use to analyze 16S rRNA gene 
sequence data. According to Google Scholar, this article has been cited more than 2,560 
times as of October 2023. There has been a rebuttal of WNWN that showed how rarefying 
is beneficial in some cases (25); however, the proponents of WNWN appear to be holding 
sway over the microbiome community. I have received correspondence from researchers 
over the past 10 years asking how to address critiques from reviewers who criticize my 
correspondents’ analysis for using rarefaction. I have also received similar comments 
from reviewers regarding my own work. In responding to such critiques, I have grown 
to appreciate that there is significant confusion in the field over what is meant by 
“rarefying” and “rarefaction.”

It was unfortunate that McMurdie and Holmes used the term “rarefying” throughout 
their article. The authors were correct to state that the distinction between “rarefying” 
and “rarefaction” is confusing and leads to their conflation. They defined rarefying as 
taking a subsample of the same number of reads from each sample (NL,m) without 
replacement and discarding any samples that have fewer than that number of reads. 
The subsampling is performed without replacement. Traditionally, rarefaction involves 
repeating the subsampling step a large number of times, calculating a metric, and 
averaging the metric across the subsamples (12, 13, 26). In other words, rarefying or 
subsampling is rarefaction but with a single randomization.

Confusion over the terms is demonstrated in the choice of citations that McMur­
die and Holmes used to define rarefying (i.e., see references 13, 27, 28). The cited 
studies either did not use the words “rarefy” or “rarefying” or used them interchange­
ably with rarefy as a verb form of rarefaction. For example, Hughes and Hellmann 
did not use “rarefy” (13). Rather they used “rarefaction” in the traditional sense with 
multiple subsamplings. Meanwhile, the QIIME-based literature appears to use “rarefy” 
and “rarefaction” interchangeably to mean only a single subsampling (27, 28). Confusion 
comes from the WNWN authors’ admonition that “[i]n many cases researchers have also 
failed to repeat the random subsampling step.” This seems to call on researchers to 
use rarefaction rather than the single subsampling step. Subsequent researchers have 
continued to conflate the terms when citing WNWN (supplemental text). An exemplar 
of the confusion is the creation of a technique that uses “repeatedly rarefying” as 
an approach distinct from rarefaction when they were in fact re-proposing traditional 
rarefaction (29).

To minimize confusion, I will use “subsampling” in place of “rarefying” through the 
remainder of this study, and I will use the following definitions of rarefaction:

1. Select a minimum library size, NL,m. Researchers are encouraged to report the 
value of NL,m.

2. Discard samples that have fewer reads than NL,m.

3. Subsample the remaining libraries without replacement such that they all have 
size NL,m.
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4. Compute the desired metric (e.g., richness, Shannon diversity, and Bray-Curtis 
distances) using the subsampled data.

5. Repeat Steps 3 and 4 for a large number of iterations (typically 100 or 1,000). 
Researchers are encouraged to report the number of iterations.

6. Compute summary statistics (e.g., the mean) using the values from Step 4.

This definition aligns with how rarefaction was originally defined for comparing 
richness (i.e., the number of taxa in a community) across communities when communi­
ties are sequenced to different depths (5, 6). With this more general approach to the 
definition of rarefaction, rarefaction can be performed using any alpha or beta diversity 
metric. This strategy has been widely used by my research group and others and is 
available in the mothur software package using commands such as summary.single, 
rarefaction.single, phylo.diversity, and dist.shared. The procedure outlined above could 
also be used for hypothesis tests of differential abundance; however, further considera­
tion is needed to synthesize the results of these tests across a large number of replica­
tions.

Description and critique of “Simulation A” from WNWN

McMurdie and Holmes analyzed the effect of subsampling and other approaches 
on clustering accuracy using what they called Simulation A in their Fig. 2A and 
elsewhere in WNWN. In Simulation A, they investigated the ability to correctly 
assign simulated microbiome samples to one of two clusters representing two simu­
lated treatment groups. Thankfully, the R code for Simulation A was provided by 
the authors in the simulation-cluster-accuracy/simulation-cluster-accuracy-server.Rmd 
R-flavored markdown (R markdown) file that was published as Protocol S1 in WNWN. I 
will outline the simulation strategy below and will reference line numbers from their R 
markdown file with “L” as a prefix.

For the WNWN cluster analysis, operational taxonomic unit (OTU) abundances and 
sequencing depths were obtained from the GobalPatterns data set (2), which consisted 
of 26 samples originally obtained from 9 environments including creek (n = 3), human 
feces (n = 4), human tongue (n = 2), lake (n = 2), mock communities (n = 3), ocean (n = 
3), sediment (n = 3), skin (n = 3), and soil (n = 3). In the WNWN analysis, the seven human 
fecal and ocean sequence data sets were used to generate the OTU distributions for the 
two simulated treatment groups (L129). To generate the fecal and ocean distributions, 
the authors included any OTU that appeared in more than one of the four fecal and three 
ocean samples (L60 and L137). The OTUs were sorted by how many of the seven samples 
the OTUs were observed in followed by their total abundance across all seven samples 
(L139). From this sorted list, they obtained the identifiers of the first 2,000 OTUs (L66). 
Returning to the seven samples, they selected the data for the corresponding 2,000 OTUs 
and pooled the OTU abundances of the fecal and ocean samples separately to create 
two OTU abundance distributions (L144, L159 and L160, and L197 and L198). Next, the 
fecal and ocean distributions were mixed in eight different fractions to generate two 
community types that differed by varying effect sizes (i.e., 1.00, 1.15, 1.25, 1.50, 1.75, 2.00, 
2.50, and 3.50; L170–L195 and L220); an effect size of 1.00 generated a null model with 
no difference between the treatment groups. To simulate the variation in sequencing 
depth across the 80 samples, they normalized the number of sequences from each of the 
26 samples in the full GlobalPatterns data set so that the median number of sequences 
(ÑL) across the samples had 1,000, 2,000, 5,000, or 10,000 sequences (L324 and L325). 
They then randomly sampled the 26 normalized sequencing depths, with replacement, 
to generate 80 sequencing depths. From each community type, they simulated 40 
samples by sampling to the desired number of sequences (L73, L230–L233 and L326 
and L327). Each simulation condition was repeated five times (L85). Finally, they removed 
rare and low-prevalence OTUs in two steps. First, they removed any OTUs whose total 
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abundance was less than three across all 80 samples and that did not appear in at least 
three samples (L368–L386). Second, they removed any OTUs that did not have more than 
one sequence in more than 5% of the 80 samples (i.e., four samples) and that did not 
have a total abundance across the 80 samples greater than one half of the number of 
samples in each community type (i.e., 20) (L523–L538 and L551). Simulation A consisted 
of 160 simulations (eight effect sizes × four median sequencing depths × five replicates = 
160 simulations).

After generating the OTU counts for the 160 simulations, the authors applied several 
normalization methods, distance calculations, and clustering algorithms to the data. To 
normalize the OTU data, the WNWN analysis either applied no normalization procedure 
(L559), calculated OTU relative abundances (L392–L401 and L562 and L563), subsam­
pled the data (L409–L416 and L566–L569), performed Variance Stabilization using the 
DESeq R package (L478–L504 and L580–L583) (7), or performed Upper-Quartile Log-Fold 
Change normalization using the edgeR R package (L425–L457, L576 and 577, and L622–
L721) (19). In subsampling the data, the authors either included all of the samples or 
removed samples whose sequencing depth fell below the 5, 10, 15, 20, 25, and 40 
percentiles across all 80 samples (L96 and L1065–L1077).

Non-normalized data were used to calculate Bray-Curtis, Euclidean, Poisson, and 
Weighted UniFrac distances (L793–L798 and L801–L806). Relative abundance data were 
used to calculate Bray-Curtis, Unweighted UniFrac, and Weighted UniFrac distances 
(L760–L767). Subsampled data were used as input to calculate distances between 
samples using Bray-Curtis, Euclidean, Unweighted UniFrac, Weighted UniFrac distances, 
Poisson distances, and top-Mean Squared Difference (L769–L775, L793–L798, and L801–
L806). DESeq Variance Stabilization normalized data were used to calculate Bray-Curtis, 
Euclidean, and Weighted Unifrac distances (L793–L798). The Upper-Quartile Log-Fold 
Change normalized data were only used to calculate top-Mean Squared Difference 
distances (L801–L806). WNWN calculated Bray-Curtis (30), Euclidean (30), Unweighted 
UniFrac (31), and Weighted UniFrac distances (32) using the Phyloseq R package (33). 
They calculated Poisson distances using the PoiClaClu R package (34). The top-Mean 
Squared Difference was calculated using the edgeR R package (19). The resulting 
distance matrices were used to cluster the 80 samples into one of two clusters using 
partitioning around the medoid (PAM), K-means clustering, and hierarchical clustering 
(L865–L879). Although data for all three methods were presented in Protocol S1, only the 
PAM data were presented in the main article. The accuracy of the clustering assign­
ments was quantified as the fraction of the 80 samples that were assigned to the 
correct cluster (L887–L908). Since some of the subsampling conditions removed samples 
below a minimum sequencing depth threshold, the removed samples were counted as 
mis-clustered samples yielding minimum accuracies below 50%.

Although all simulations represent an artificial representation of reality and can be 
critiqued, I have identified 11 elements of the design of Simulation A that warranted 
further review.

1. Simulated conditions were only replicated five times each, potentially increasing 
the sensitivity of results to the choice of the random number generator seed.

2. The average sizes of the libraries do not cover the larger sequencing depths 
frequently found in modern microbiome studies, which may limit the generaliza­
bility of the results.

3. DESeq-based Variance Stabilization generated negative values and was used with 
distance calculation methods that were sensitive to negative values, which likely 
led to nonsense distances and clusters.

4. A single subsampling of each data set was evaluated rather than using rarefaction, 
which likely resulted in noisier data.
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5. Results using PAM clustering were not directly compared to those of K-means and 
hierarchical clustering, although close inspection suggests that K-means may have 
been superior to PAM for some conditions.

6. Subsampling removed the smallest 15% of the samples, which penalized accuracy 
values by 15 percentage points.

7. The distribution of library sizes was not typical of those commonly seen in 
microbiome analyses, which may limit the generalizability of the results.

8. A filtering step was applied to remove rare taxa from the simulated data sets, 
which may have skewed the shape of the community distributions.

9. There was no accounting for differences in performance when library sizes were 
confounded with treatment groups.

10. Clustering accuracy was used rather than the more direct and frequently applied 
comparisons of beta diversity using permutation tests.

11. There was no consideration of effects of normalization methods on richness, 
which is the traditional application of rarefaction.

Below, I replicated the original WNWN simulations and evaluated these points to 
reassess whether subsampling or rarefaction are “inadmissible.”

RESULTS

Replication of WNWN simulations and results

Before assessing the impact of the points I critiqued above, I attempted to replicate 
the results shown in Fig. 4 and 5 of WNWN using the authors’ code. I created a Conda 
environment that used the R version and package versions that were as close as possible 
to those used in WNWN. It was necessary to patch WNWN’s R markdown file to render 
the document to be compatible with the overall workflow of this study. I was able to 
generate figures similar to those presented as WNWN’s Fig. 4 and 5; my results are shown 
in this study as Fig. S1 and S2, respectively. The differences in results are likely due to 
differences in software versions and operating systems. It is also worth noting that the 
published versions of the two figures differ from those included in Protocol S1 within the 
rendered HTML file (simulation-cluster-accuracy/simulation-cluster-accuracy-server.html) 
and that the figure numbers are one higher in the article than those generated by the 
R markdown file (i.e., Protocol S1 labels the figures as Fig. 3 and 4, corresponding to the 
published Fig. 4 and 5). Regardless of the differences, my results were qualitatively similar 
to that provided in WNWN’s Protocol S1.

1. Simulated conditions were only replicated five times each, potentially 
increasing the sensitivity of results to the choice of the random number 
generator seed

Each simulated condition was replicated five times in WNWN and the article reported 
the mean and standard deviation of the replicate clustering accuracies. The relatively 
small number of replicates accounts for the jerkiness of the lines in WNWN’s Fig. 4 and 5 
(e.g., the Bray-Curtis distances calculated on the DESeq Variance Stabilization normalized 
data). A better approach would have been to use 100 replicates as this would reduce 
the dependency of the results on the random number generator’s seed. By increasing 
the number of replicates, it was also possible to compare the probability of falsely and 
correctly clustering samples from the same and different treatment groups together (see 
points 10 and 11 below). Because the accuracies were not symmetric around the mean 
accuracy values, the median and 95% confidence interval or interquartile range should 
have been reported. To test the effect of increasing the number of replicates, I pulled 
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apart the code in simulation-cluster-accuracy/simulation-cluster-accuracy-server.Rmd 
into individual R and bash scripts that were executed using a Snakemake workflow 
with the same Conda environment I used above. This was necessary since the number of 
simulated conditions increased 20-fold with the additional replicates. Such intense data 
processing was not practical within a single R markdown document. Again, my results 
were qualitatively similar to those generated using the single R markdown file (Fig. S3 
and S4). The increased number of replications resulted in smoother lines and allowed me 
to present empirical 95% confidence intervals. For all analyses in the remainder of this 
article, I used 100 randomized replicates per condition.

2. The average sizes of the libraries do not cover the larger sequencing 
depths frequently found in modern microbiome studies, which may limit the 
generalizability of the results

In the 10 years since WNWN was published, sequencing technology has advanced and 
sequence collections have grown considerably. Although sequencing depths at the 
smaller end of the range used in WNWN are reported in recent studies, it is increasingly 
common to find a median number of sequences larger than 10,000 [see Table 1 of 
reference (4)]. Therefore, I included an additional median depth of sequencing of 50,000 
sequences with WNWN’s four median sequencing depths (i.e., 1,000, 2,000, 5,000, and 
10,000). Additional sequencing coverage would be expected to result in more robust 
distance values since there would be more information represented in the data. Indeed, 
the added sequencing depth showed higher accuracy values at lower effect sizes for 
the combinations of normalization methods and distance calculations (Fig. S3). Increased 
sequencing coverage also resulted in improved clustering accuracy for lower effect sizes 
when the library size minimum quantile was decreased (Fig. S4). I will revisit the choice of 
the library size minimum quantile below.

3. DESeq-based variance stabilization generates negative values and was 
used with distance calculation methods that are sensitive to negative values, 
which likely led to nonsense distances and clusters

Close comparison of WNWN’s Fig. 4 (Fig. S1) and my version (Fig. S3) revealed several 
differences between the two plots. First, in the WNWN analysis, the accuracies for the 
Weighted UniFrac distances calculated using DESeq Variance Stabilization normalization 
at the largest effect size (i.e., 3.50) were 1.00 with no variation between replicates for 
median sequencing depths of 1,000, 2,000, and 10,000. In my version of the analysis, 
the median values for the same sequencing depths were also 1.00. However, the 95% 
confidence intervals spanned between 0.51 and 1.00, indicating a considerable amount 
of variation in the accuracy values. Second, clustering accuracy for Bray-Curtis distances 
also calculated using DESeq Variance Stabilization normalized OTU counts were different 
between the original and my simulation at smaller effect sizes and had wide confidence 
intervals. Inspection of the DESeq Variance Stabilization normalized OTU counts revealed 
that the method resulted in negative values. It has been suggested that WNWN turned 
negative DESeq normalized counts to zero (25); however, I was unable to find code in 
simulation-cluster-accuracy-server.Rmd that made this transformation. In fact, rendering 
the R markdown files in WNWN’s Protocol S1 generated warning messages when passing 
the DESeq normalized counts to the Bray-Curtis calculator, which said, “results may 
be meaningless because data have negative entries in method ‘bray’.” Although the 
Weighted UniFrac calculator function did not generate a similar warning message, 
negative count values would also result in similarly meaningless distances. Both are 
due to the fact that the distance calculators sum the counts of each OTU in both 
samples being compared. In contrast, a Euclidean distance does not use a similar sum 
but sums the square of the difference between the OTU abundance in each sample. 
Even if negative values were converted to zeroes, this would effectively be the same as 
removing rare taxa, which could have a significant impact on the shape of the communi­
ties (4). To assess the prevalence of negative counts in the simulated data, I quantified 
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the fraction of negative values in the OTU matrix from each simulation and counted the 
number of simulations where the normalized OTU table had at least one negative value 
(Fig. S5). In general, the fraction of negative OTU counts increased with effect size but 
decreased with sequencing effort. The fraction of simulations with at least one negative 
value increased with effect size and sequencing effort. The high frequency of negative 
OTU counts resulted in highly variable Bray-Curtis and Weighted UniFrac values. It is 
likely that because the WNWN analysis only used five replicates, the large variation in 
accuracies at high effect sizes was missed initially. For the rest of this reanalysis study, I 
will only report results using the DESeq-based Variance Stabilization normalization with 
the Euclidean distance.

4. A single subsampling of each data set was evaluated rather than using 
rarefaction, which likely resulted in noisier data

A more robust analysis would have used rarefaction since it would have averaged 
across a large number of random subsamplings (e.g., 100 or 1,000). By using a large 
number of subsamplings, the likelihood of incorporating all of the OTUs would have 
increased. Rather than being guilty of “omission of available valid data” as claimed in 
WNWN, with a sufficient number of subsamplings, traditional rarefaction uses all of the 
available data. To fairly compare subsampling, as employed in WNWN, and rarefaction, I 
removed the 15% of samples with the lowest number of sequences and compared the 
clustering accuracies from a single subsampling to rarefaction with 100 randomizations. 
This analysis revealed two benefits of rarefaction. First, the median distances generated 
by rarefaction was always at least as large as those from a single subsample (Fig. 1). The 
difference was most pronounced for smaller average library sizes and at smaller effect 
sizes. The Unweighted UniFrac distances were most impacted by the use of rarefaction 
over subsampling. Second, the interquartile ranges in clustering accuracy by rarefaction 
were generally smaller than those by subsampling and showed similar trends to the 
difference in the median distances (Fig. 1). Because rarefaction incorporates more of the 
data and generally performed better than subsampling, the remainder of this analysis 
will report results using rarefaction rather than by subsampling, except when noted.

FIG 1 Rarefaction resulted in larger and less variable clustering accuracies. With the exception of Unweighted UniFrac distances, the improved performance 

by rarefaction was observed at smaller effect sizes. In the first row of panels, larger values mean that the accuracies by rarefaction were better than those of 

subsampling. In the second row of samples, larger values mean that interquartile range (IQR) for rarefaction was larger than that of subsampling.
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5. Results using PAM clustering were not directly compared to those of 
K-means and hierarchical clustering, although close inspection suggests that 
K-means may have been superior to PAM for some conditions

The clustering accuracy measurements reported in the body of WNWN were determined 
using PAM-based clusters, while Protocol S1 also includes K-means and hierarchical 
clustering. Although the data were not displayed in a manner that lent itself to direct 
comparison in Protocol S1, close inspection of the rendered figures suggested that PAM 
may not have been the optimal choice in all situations. Actually, K-means clustering 
appeared to perform better in many simulations. Because the accuracies were the 
smallest at lower effect sizes, I focused my comparison at the effect size of 1.15. For 
each set of 100 replicated simulated data sets, I compared the clustering accuracy across 
clustering methods to see how often each clustering method resulted in the highest 

FIG 2 K-means clustering was consistently as good or better than PAM or hierarchical clustering when comparing rarefaction to other normalization methods. 

Each point represents the percentage of 100 simulations where that clustering method performed as well or better than the other methods for that normaliza­

tion procedure.
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accuracy (Fig. 2). Indeed, K-means clustering performed better than the other methods. 
Among all combinations of normalization methods, distance calculations, and read 
depths, K-means clustering was at least as good as the other methods in 74.39% of the 
randomizations (Fig. 2); PAM clustering resulted in clustering accuracies as good or better 
than the other methods in 49.92% of the randomizations; and hierarchical clustering 
was at least as good as the other methods for 44.32% of the randomizations. Finally, I 
specifically compared the clustering accuracies using rarefaction for each of the distance 
calculations methods using PAM and K-means clustering. Among the 30 combinations of 
distance calculations and read depths, K-means performed better than PAM in 29 cases 
with PAM doing better in the one other case (i.e., calculating distances with Euclidean 
using 10,000 sequences). When using subsampled data, K-means clustering performed 
better than PAM in each case. Because K-means clustering did so much better than PAM 
clustering in the simulated conditions, I used K-means clustering for the remainder of this 
study.

6. Subsampling removed the smallest 15% of the samples, which penalized 
accuracy values by 15 percentage points

In WNWN, the authors quantified the trade-off between median sequencing depth, the 
number of samples removed below the threshold, and clustering accuracy (WNWN’s Fig. 
5, my Fig. S4). Although the optimal threshold varied by distance metric, normalization 
method, and sequencing depth, they removed samples whose number of sequences was 
less than the 15th percentile (L404–L419). They acknowledged that this screening step, 
which was only used with subsampling, would decrease clustering accuracy, putting 
it at a relative disadvantage to the other methods (page 5, column 1, last paragraph). 
Therefore, it was not surprising that the peak clustering accuracy for their subsampled 
data was at 85%. Because the true best threshold would not be known a priori in an 
actual microbiome study, it would be impossible for researchers to conduct a sensitivity 
analysis comparing the trade-offs between sequencing depth, sample number, and 
clustering accuracy to select a sequencing depth for their analysis without the risk of 
p-hacking. The differences in clustering accuracy between subsampling and rarefaction 
with PAM and K-means clustering indicated that it was necessary to reassess the 
trade-off between the library size minimum quantile and clustering accuracy. When 
using rarefaction, K-means clustering, and only considering conditions with 2,000 or 
more sequences, there was not a condition where setting a higher threshold resulted 
in a better accuracy than using all of the samples (Fig. 3). These results showed that 
for modern sequencing depths, using the full data sets with rarefaction and K-means 
clustering resulted in accuracies that were better than those observed when removing 
the smallest 15% of the samples from each simulated data set. When the WNWN Fig. 4 
was recast with these approaches, rarefaction performed at least as well as any of the 
other transformations with each distance calculation (Fig. 4).

7. The distribution of library sizes was not typical of those commonly seen in 
microbiome analyses, which may limit the generalizability of the results

As described above, the sequencing depths used in the 26 GlobalPatterns data sets 
were used as the distribution to create sequencing depths for the 80 samples that were 
generated in each simulation. The GlobalPatterns data sets had a mean of 1,085,256.8 
sequences and a median of 1,106,849 sequences per data set (Fig. S6). The data sets 
ranged in sequencing depth between 58,688 and 2,357,181 sequences for a 40.16-fold 
difference. Rather than representing a typically observed distribution of sequencing 
depths that would be skewed right (see Fig. S1 from reference 4), the sequencing 
depth distribution was normally distributed (Shapiro-Wilk test of normality, P = 0.57). 
From these simulations, it is unclear how sensitive the various normalizations and 
distance calculations were to a more realistic skewed distribution. A second limitation 
of this sequencing depth distribution is that it only contained 26 unique sequencing 
depths such that each sequencing depth would have been re-used an average of 
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3.08 times in each simulation. Yet, it is unlikely for a real sequence collection to have 
duplicate sequencing depths. To reassess the WNWN results in the context of a more 
typical distribution of sequencing depths, I created a new set of simulations to test the 
effect of the shape of the distribution on the results. I created a simple sequencing 
depth distribution where there were 80 depths logarithmically distributed between the 
minimum and maximum sequencing depths of the GlobalPatterns data set (Fig. S6). 
The median of this distribution was 372,040, and the mean was 629,824.8. When I 
regenerated WNWN’s Fig. 4 and 5 using the log-scaled sequencing effort distribution, the 
differences in normalization methods were more apparent (Fig. 5; Fig. S7). For each of 
the distance calculators, rarefaction to the size of the smallest data set yielded accura­
cies that were at least as good as the other methods across effect sizes and median 
sequencing depths. The difference was most pronounced at smaller effect sizes and 
sequencing depths. When comparing the performance of rarefaction across distance 

FIG 3 When the median sequencing depth was 2,000 sequences or more, rarefaction of the entire data set performed better than removing the smallest 15% of 

samples when using K-means clustering. This figure is analogous to Fig. S4, except that K-means clustering was used instead of PAM.
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calculators for different effect sizes, sequencing depths, and size of the smallest sample, 
the accuracies I observed using the log-scaled sample sizes were at least as good as 
those I obtained using the GlobalPatterns-based distribution (Fig. 4).

8. A filtering step was applied to remove rare taxa from the simulated data 
sets, which may have skewed the shape of the community distributions

McMurdie and Holmes were emphatic that “rarefying biological count data is statisti­
cally inadmissible because it requires the omission of available valid data” (emphasis 
in original). Thus, it is strange that they argue against removing data when rarefying/sub­
sampling but accept removing rare and low-prevalence OTUs prior to normalizing their 
counts. This practice has become common in microbiome studies (35–37). However, my 
previous work has shown that rare sequences from a poorly sequenced sample often 

FIG 4 K-means clustering of distances calculated with rarefaction was as good or better than any other normalization method. This figure is analogous to Fig. S3, 

except that K-means clustering was used instead of PAM; rarefaction on the full data set was used instead of subsampling to the size of the sample at the 15th 

percentile; and DESeq Variance Stabilization normalized OTU counts were only used with Euclidean distances.
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appear in more deeply sequenced samples, suggesting that they are not necessarily 
artifacts (4). Furthermore, removing rare sequences alters the structure of communities 
and has undesirable effects on downstream analyses. Although my previous work does 
an extensive analysis of the effects of removing rare sequences, I wanted to explore the 
effect of filtering in the context of the WNWN simulation framework. For each of the 
filtered and non-filtered OTUs, Table 1 calculated the difference in accuracy between 
replicates for each normalization method and distance calculator across effect sizes for 
a median sequencing depth of 10,000 (Fig. S8). The median difference in accuracies (i.e., 
clustering accuracies with filtered data minus those without filtering) did not deviate 
meaningfully from zero. However, the 95% confidence intervals were most pronounced 
at large effect sizes when using raw counts, DESeq Variance Stabilization, and Upper-
Quartile Log-Fold Change and at smaller effect sizes when using rarefaction and relative 

FIG 5 Clustering accuracies that used rarefaction were as good or better than the other normalization procedures when there is a log-scaled distribution of 

sequencing depths. This figure is analogous to Fig. 4, except that the sequencing depths for each of the 80 samples in each simulation were drawn without 

replacement from a log-scaled distribution rather than from the GlobalPatterns sequencing depths.
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abundances. Given the large variation caused by removing rare taxa and my previous 
work (4), OTU filtering should not be performed in microbiome analyses. Considering 
the minimal effect that removing rare OTUs had on the median difference in cluster­
ing accuracy in the current simulation framework, I have used the filtered data sets 
throughout the current study.

9. There was no accounting for differences in performance when library sizes 
were confounded with treatment groups

I and others have observed that not using rarefaction can lead to falsely detecting 
differences between communities when sequencing effort is confounded with the 
treatment group (25, 38). Previous analyses showed that in these situations, rarefaction 
did the best job of controlling the rates of false detection (i.e., Type I errors) and 
maintaining the statistical power to detect differences (i.e., 1 − rate of Type II errors) 
of differences between groups of samples. Such situations have been observed when 
comparing communities at different body parts where one site is more likely to generate 
contaminating sequence reads from the host (e.g., see reference 39). To determine 
whether this result was replicated with the WNWN simulation framework, I created a 
sequencing depth distribution where sequencing depth was fully confounded with the 
treatment group using both the GlobalPatterns and Log-scaled sequence distributions. 
To confound the sequencing depth, sequencing depths from one treatment group were 
drawn from below the median number of sequences of the sequencing distribution, and 
those for the second treatment group were from above the median. To assess the risk 

FIG 6 Rarefaction was consistently as good or better than all other normalization methods at assigning samples to the correct treatment group regardless 

of whether sequencing depth was confounded by treatment group. Because the clustering algorithms forced samples into one of two groups, the expected 

accuracy with an effect size of 1.00 was 0.51. With an effect size of 1.15, the expected accuracy was 1.00. Each point represents the median of 100 replicates, 

and the error bars represent the observed 95% confidence interval. Data are shown for a median sequencing depth (ÑL) of 10,000 sequences when individual 

sequencing depths were sampled with replacement from the GlobalPatterns data set or without replacement from the log-scaled distribution.
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of falsely detecting clusters, I compared the clustering accuracies using an effect size of 
1.00 using both the confounded and randomized sequencing distributions (see rows 1 
and 2 of Fig. 6). The samples should have only been assigned to one cluster; however, 
each of the clustering methods forced the samples into two clusters. So, when there were 
two groups of 40 samples that did not differ, the best a method could do would be to 
correctly assign 41 of the 80 samples for an accuracy of 0.51. The false detection risk 
did not vary by method when the sequencing depth was randomized across treatment 
groups. Yet, when the sequencing depth was confounded with the treatment group, 
rarefaction was the most consistent normalization method for controlling the generation 
of spurious clusters. At larger effect sizes, the ability to correctly identify two clusters 
increased when the sequencing depth was confounded with treatment group (Fig. 6). 
At the effect size of 1.15, the rarefied data generated the highest accuracy clusters 
regardless of whether the sequencing depths were confounded. Although the level of 
confounding in this simulation was extreme, it highlights the ability of rarefaction to 
control the false detection rate and the ability to correctly detect clusters relative to the 
other normalization methods.

10. Clustering accuracy was used rather than the more direct and frequently 
applied comparisons of beta diversity using permutation tests

Since WNWN was published, there has been controversy over the use of clustering 
methods to group samples (i.e., enterotypes). Concerns have been raised including 
whether such clustering should be done on ecological distances or sequence counts and 
the biological interpretation of such clusters (28, 40, 41). As described in the previous 
point, one notable challenge with using clustering accuracy as the dependent variable 
is that the clustering methods force the samples into one of two clusters. For the case 
where the effect size was 1.00, it was impossible for all 80 samples to be assigned to a 
single cluster. A more commonly used approach for analyzing distance matrices is to use 
a non-parametric analysis of variance test (i.e., NP-ANOVA, AMOVA, PERMANOVA) (42). I 
subjected each of the distance matrices to such a test using adonis2, a function from the 
vegan R package that implements this test to assess the effects of each normalization 
and distance calculation method on the Type I errors and statistical power (43). When 
sequencing depths were randomly distributed across the two treatment groups, the 
Type I error did not meaningfully deviate from the expected 5% (Fig. 7). However, when 
sequencing depths were confounded with treatment group, rarefaction was the only 
normalization approach to control the Type I error. Similar to the clustering accuracy 
results, when distances were calculated using rarefaction, the tests consistently had the 
best statistical power (Fig. 7). When considering both Type I error and power, rarefaction 
performed the best among the different normalizations.

11. There was no consideration of effects of normalization methods on 
richness, which is the traditional application of rarefaction

Rarefaction was originally proposed as a method for controlling uneven sequencing 
effort when comparing community richness values (5, 6). Thus, it was surprising that 
WNWN did not consider the effect of the proposed normalizations on richness and 
alpha-diversity metrics such as richness or Shannon diversity. Therefore, for each of the 
normalizations, I compared the richness and diversity of the two treatment groups. The 
DESeq Variance Stabilization normalized data were not included because the normaliza­
tion produced negative values which were not compatible with calculations of richness 
or Shannon diversity. Also, data from the Upper-Quartile Log-Fold Change normalization 
were not used for richness calculations since the normalization returned the same 
richness values for each sample regardless of the treatment group. I assessed whether 
the alpha diversity was significantly different between the treatment groups for each 
iteration using the non-parametric Wilcoxon two-sampled test. I compared the risk of 
committing Type I errors and the power to detect differences by the different normaliza­
tions. For these analyses, I used the GlobalPatterns (Fig. 8) and log-distributed (Fig. S9) 
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data with the random and confounded distribution of sequencing depths. Similar to the 
results in points 9 and 10, with the exception of rarefaction, the simulations using a 
confounded sequence depth distribution resulted in all of the replicates having a 
significant test. The power to detect differences in richness and diversity at effect sizes of 
1.15 and greater with rarefaction was at least as high as any of the other normalizations.

One odd result from this analysis was that the power to detect differences in richness 
at small effect sizes increased between 1,000 and 2,000 sequences with values of 0.91 
and 1.00, respectively. The power then decreased with increasing sequencing effort to 
0.57 with 50,000 sequences. This appeared to be because although the parent distribu­
tions had very different shapes, they shared a large number of rare taxa. When using 
rarefaction to compare the distributions at the size of the smallest distribution (i.e., 
3,598,077 sequences), the feces parent distribution had an average of 1,559.65 OTUs, and 
the ocean had an average of 1,335.00 OTUs; they shared an average of 894.66 OTUs. 
However, when comparing the distributions at 1,000 and 50,000 sequences, the Ocean 
distribution had greater richness than the feces distribution by 43.76 and 6.05, respec­
tively. Therefore, although more replicates at lower effect sizes yielded a significant P 
value at shallow rather than deeper sequencing depths for richness, the direction of the 
difference in richness was incorrect. This result underscores the challenges one faces 
when comparing communities using metrics based on presence-absence data like 
richness and Jaccard and Unweighted UniFrac distances.

FIG 7 Rarefaction was consistently as good or better than all other normalization methods at controlling for Type I error and maximizing power to detect 

differences in treatment group using adonis2 regardless of whether sequencing depth was confounded by treatment group. Type I errors were assessed as the 

fraction of 100 simulations that yielded a significant P value (i.e., less than or equal to 0.05) at an effect size of 1.00. Power was assessed as the fraction of 100 

simulations that yielded a significant P value at an effect size of 1.15. Data are shown for a median sequencing depth (ÑL) of 10,000 sequences when individual 

sequencing depths were sampled with replacement from the GlobalPatterns data set or without replacement from the log-scaled distribution.
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DISCUSSION

The conclusions from WNWN have had a lasting impact on how researchers ana­
lyze microbiome sequence data. As I have demonstrated, using WNWN’s simulation 
framework, their claims are not supported. The most important points that lead to the 

FIG 8 Rarefaction was consistently as good or better than all other normalization methods at controlling for Type I 

error and maximizing power to detect differences in treatment groups using alpha-diversity metrics regardless of whether 

sequencing depth was confounded by treatment group when using sequencing depths drawn from the GlobalPatterns data 

sets. Statistical comparisons of OTU richness and Shannon diversity were performed using the non-parametric Wilcoxon 

two-sampled test. Type I errors were assessed as the fraction of 100 simulations that yielded a significant P value (i.e., less 

than or equal to 0.05) at an effect size of 1.00. Power was assessed as the fraction of 100 simulations that yielded a significant 

P value at an effect size of 1.15. Data are shown for when the case when individual sequencing depths were sampled with 

replacement from the GlobalPatterns data set.
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difference in our conclusions include the choice of clustering algorithm and arbitrarily 
selecting a sequencing effort threshold that was used to remove samples. Furthermore, 
the decision to evaluate the effectiveness of normalization methods based on cluster­
ing samples adds a layer of analysis that has been controversial and not widely used. 
Ultimately, the authors’ choice of the word “rarefying” has sewn confusion in the field 
because it is often used in place of the word “rarefaction”. As I have demonstrated, there 
were numerous choices throughout the original study that resulted in rarefying/subsam­
pling looking worse than it truly is. In fact, when the data of the current study are 
taken as a whole, rarefaction is the preferred approach. Short of obtaining the exact 
same number of sequences from each sample, rarefaction remains the best approach to 
control for uneven sequencing effort when analyzing alpha- and beta-diversity metrics. 
Although beyond the scope of the current study, the same principles would also support 
using rarefaction to control for uneven sequencing effort when calculating alpha- and 
beta-diversity metrics in shotgun metagenomic sequencing analyses.

It is worth commenting on WNWN’s advice to use DESeq’s Variance Stabilization or 
edgeR’s Upper-Quartile Log-fold Change normalization strategies. These methods have 
been adopted from gene expression analysis to microbiome analysis. Gene expression 
analysis implicitly assumes that all samples have the same genes. While this assumption 
might be valid when comparing host gene expression in healthy and diseased tissues 
from a cohort of patients, it does not generalize to those patients’ microbiota. Microbial 
populations are highly patchy in their distribution. Thus, a zero count for gene expression 
is more likely to represent a gene below the limit of detection, whereas a zero count 
for a microbiome analysis is more likely to represent the true absence of the OTU. In 
fact, zeroes are less common in gene expression analyses. However, because microbiome 
studies have so many zeroes, it is necessary to add a pseudo-count to all OTUs for both 
the edgeR- and DESeq-based normalizations (L443 and L487, respectively). In WNWN, a 
pseudo-count of 1 was used. However, this value is arbitrary and the results can vary 
based on the choice of pseudo-count and the patchiness of the communities being 
analyzed. Since WNWN was published, compositional approaches have been proposed 
to account for uneven sequencing and to provide improved interpretability (14, 16–18, 
44, 45). However, these methods also often require the use of pseudo-counts. Rarefaction 
is preferred to these alternatives.

The choice of distance metric is a complicated question, and the use of six differ-
ent metrics in WNWN illustrates the challenges of selecting one. Within the ecology 
literature, Euclidean distances are widely avoided because joint absence is weighted 
the same as joint presence of taxa (30). As discussed in point 11, distances that are 
based on community membership (i.e., the presence or absence of taxa) performed 
worse than those than those that were based on community structure (i.e., their relative 
abundance). For this reason, the Unweighted UniFrac and other distances like the Jaccard 
or Sorenson distance coefficients should likely be avoided. The Poisson distance metric is 
largely novel to the microbial ecology literature and performed no better than the more 
traditional distances. In the current analysis, the phylogenetic Weighted UniFrac distance 
performed comparably to Bray-Cutis distances for clustering or differentiating between 
communities with adonis2. Regardless of the distance calculation employed, they all 
performed best when using rarefaction relative to the other normalization methods.

The WNWN authors claim that “Rarefying counts requires an arbitrary selection of a 
library size minimum that affects downstream inference” (page 8, column 1, point 3). In 
actual microbiome studies, the selection of a sequencing depth is not as arbitrary as the 
authors claim. Rather, to avoid p-hacking, researchers pick a set of criteria where they will 
include or exclude samples prior to testing their data. Examples of criteria might include 
the presence of a large gap in the sequencing effort distribution, a desire to include 
poorly sequenced controls, or the a priori stipulation of a minimum sequencing effort. To 
mitigate concerns of arbitrary or engineered minimum library sizes, researchers should 
indicate the rationale for the threshold they selected.
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WNWN performed a second set of simulations to address the effect of normalization 
method on the ability to correctly detect differential abundance of OTUs that were 
randomly selected to have their relative abundances changed (i.e., “Simulation B”). 
Re-addressing this set of simulations is beyond the scope of the current analysis, and 
others have already contributed critiques (25). Many of the same concerns addressed 
here would also apply. Perhaps most important is the fact that if the relative abun­
dance of several OTUs increases, then the relative abundance of all other OTUs would 
necessarily decrease because the data are compositional (45). Thus, one would expect 
every OTU to be differentially abundant. Because of this, it is not possible to truly 
modify the abundance of a set of OTUs independent of all other OTUs. This is an 
important limitation of tests of methods attempting to detect differentially abundant 
OTUs. Alternatively, one could increase the abundances of several OTUs while decreasing 
the abundances of other OTUs without changing the overall total. Regardless, a form 
of rarefaction could still be employed for detecting differential abundance. One could 
subsample the data, perform the statistical test, and identify the differentially abundant 
OTUs. In my experience, the largest differences between subsamples are for low relative 
abundances OTUs, which are unlikely to be statistically significant. This process could be 
repeated a small number of times to confirm that the significance of OTUs is robust to 
subsamplings.

In a parallel set of analyses, I have used alternative simulation and evaluation 
strategies to look more closely at rarefaction and its alternatives (38) and the practice 
of filtering low abundance sequences (4). The results of those studies are similar to 
this analysis. These studies demonstrate that it is actually sequence and OTU filtering 
that “requires the omission of available valid data” and that rarefaction is the only 
available method for controlling the effects of uneven sequencing. Far from being 
inadmissible, rarefaction of unfiltered data sets yields the most robust results when 
comparing communities based on alpha- and beta-diversity metrics.

MATERIALS AND METHODS

Reproducing WNWN protocol S1

The compressed directory published with WNWN as Protocol S1 is available on 
the PLOS Computational Biology website with WNWN at https://doi.org/10.1371/
journal.pcbi.1003531.s001. To render the R markdown files to HTML files using soft­
ware and packages as similar as possible to that of WNWN, I created an environ­
ment (see workflow/envs/nr-s1.yml in this study’s repository) that contained versions 
as close to those indicated in the pre-rendered files. The most important packages 
for the reproduction of the cluster analysis included DESeq (my version: v.1.39.0 vs 
WNWN version: v.1.14.0), edgeR (v.3.30.0 vs v.3.4.0), cluster (v.2.1.0 vs v.1.14.4), phyloseq 
(v.1.32.0 vs v.1.6.0), and PoiClaClu (v.1.0.2.1 vs v.1.0.2). In addition, I used R v.4.0.2, 
whereas the WNWN analysis used v.3.0.2. Finally, to render the simulation-cluster-accu­
racy-server.Rmd file to HTML, it was necessary to apply a patch to the code. This patch set 
the path to the location where the figures should be saved and removed the R code that 
deleted all objects in the environment. Both changes were necessary to better organize 
the project and had no substantial bearing on the content of the rendered HTML file.

Simulated communities

The code contained within simulation-cluster-accuracy-server.Rmd was spilt into 
individual R scripts and modified to make the generation of the simulated communi­
ties more modular and scalable. The code for generating the simulated communities 
was run using the nr-s1 Conda environment. The ocean and feces parent distributions 
were generated as described above. Five variables were altered to simulate each set 
of communities. First, eight mixing fractions were used to manipulate the effect size 
between the two simulated treatment groups with 40 samples per group. These were the 
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same effect sizes used in the WNWN study (1.00 [i.e., no difference], 1.15, 1.25, 1.50, 1.75, 
2.00, 2.50, and 3.50). Second, the number of sequences in each of the 80 samples was 
either randomly selected from the 26 library sizes contained within the GlobalPatterns 
data set or from a log distribution of 80 sequencing depths evenly distributed between 
the most shallow (58,688 sequences) and deeply (2,357,181 sequences) sequenced 
samples in the GlobalPatterns data set (Fig. S6). Third, the resulting 80 sequencing 
depths were scaled so that the median sequencing depth across the 80 samples was 
either 1,000, 2,000, 5,000, 10,000, or 50,000 sequences. Fourth, the sequencing depth of 
each sample was either randomly assigned to each treatment group or assigned so that 
those depths less than or greater than the median were assigned to separate treatment 
groups. Finally, each set of conditions was replicated 100 times. These five parameters 
resulted in 1,600 simulated data sets (eight effect sizes × two sequencing depth models 
× five sequencing depths × two sequencing depth assignment models × 100 replicates).

Generation of distances between communities

Next, each simulation was further processed by filtering rare OTUs to normalize uneven 
sequencing depths and to calculate ecological distances between samples. Again, the 
code contained within simulation-cluster-accuracy-server.Rmd was spilt into individual 
R scripts and modified to make the generation of the simulated communities more 
modular and scalable within the nr-s1 Conda environment. First, each simulation was 
either filtered to remove rare OTUs or left unfiltered. As was done in the WNWN study, 
filtering was performed in two steps: (i) any OTUs whose total abundance was less than 3 
across all 80 samples and that did not appear in at least 3 samples and (ii) any OTU that 
did not have more than one sequence in more than 5% of the 80 samples (i.e., 4 samples) 
and that did not have a total abundance across the 80 samples greater than one-half 
of the number of samples in each community type (i.e., 20) were removed. Second, 
OTU data were normalized by one of six approaches: (i) non-normalized raw counts, 
(ii) relative abundance, (iii) DESeq Variance Stabilization, (iv) Upper-Quartile Log-Fold 
Change normalization using edgeR, (v) a single subsampling to a common number 
of sequences, and (vi) rarefaction with 100 randomizations to a common number of 
sequences. Although the data were not presented, the WNWN code and my code also 
normalized the counts using trimmed mean of M values and relative log expression in 
edgeR. The levels of subsampling and rarefaction were selected based on the size of the 
sample whose sequencing depth was at the 0th (i.e., included all of the samples), 5th, 
10th, 15th, 20th, 25th, and 40th percentiles. Finally, the normalized simulated data sets 
were used to calculate pairwise distances between the 80 samples using seven different 
calculations: Bray-Curtis, Euclidean, Poisson, top-Mean Squared Difference, Unweighted 
UniFrac, Weighted Unifrac, and Biological Coeffcient of Variation (BCV); however, data 
using BCV were not discussed in this or in the WNWN analysis. For the rarefaction 
normalized data, each of the 100 subsampled data sets was used to calculate a distance 
matrix. The mean of the 100 distance matrices was used as the distance matrix for the 
rarefaction data. As indicated in the Results, there were combinations of normalization 
and distance methods that were not compatible (e.g., DESeq Variance Stabilization 
normalization with Bray-Curtis distances). In such cases, distance matrices were coded 
as NA. My choice of combinations of normalizations and distances to visualize was 
determined by the WNWN analysis except where noted. For each simulated data set, 
there were 280 possible combinations of filtering, normalization, and distance methods 
(2 filtering methods × 20 normalization methods × 7 distance methods).

Analysis of distances between communities

Two general strategies were used to analyze the pairwise distances in each dis­
tance matrix. First, by recycling the code contained within simulation-cluster-accuracy-
server.Rmd in the nr-s1 Conda environment, samples were assigned to one of two 
clusters using PAM with the pam function from the cluster R package, K-means clustering 
with the K-means function from the stats base R package, and hierarchical clustering 
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with the hclust and cutree functions from the stats base R package. The accuracy of 
the clustering was measured as the fraction of the 80 samples assigned to the correct 
cluster. As in WNWN, if samples were removed because the number of sequences in 
them fell below the threshold for subsampling or rarefaction, then the accuracy could 
be below 50%. For the effect size of 1.00, all of the samples should have been assigned 
to one group; however, because they were forced into two groups, there would be 41 
“correctly” assigned samples of the 80 samples (i.e., an accuracy of 0.51). Second, the 
distance matrices were analyzed for significant different centroids using the adonis2 
function from the vegan package (v.2.6-4) in the nr-modern Conda environment. The 
fraction of significant tests was the fraction of the 100 replicate simulations that had a P 
value less than or equal to 0.05. The Type I error rate for a condition was the fraction of 
significant tests when the effect size was 1.00. The power was the fraction of significant 
tests at other effect sizes.

Analysis of richness and diversity between communities

Using the nr-s1 Conda environment, I measured the richness and Shannon diversity 
using the normalized OTU counts. Richness was measured by counting the number 
of OTUs for each sample across the simulations and the Shannon diversity using their 
relative abundance using the commonly used formula (30). For the rarefaction data, each 
of the 80 samples in the 100 subsampled data sets were used to calculate the richness 
and diversity. The mean across the 100 subsamplings was used as the value for the 
rarefaction data across each of the 80 samples. To assess differences between the two 
treatment groups, the richness and diversity values were compared using the two-sam­
ple Wilcoxon non-parametric test with the wilcox.test from the stats base R package. 
Similar to the analysis using adonis2, results showed that the fraction of significant tests 
was the fraction of the 100 replicate simulations that had a P value less than or equal to 
0.05. The Type I error rate for a condition was the fraction of significant tests when the 
effect size was 1.00. The power was the fraction of significant tests at other effect sizes.
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DATA AVAILABILITY

A git repository containing all of the codes needed to reproduce this study is available 
at https://www.github.com/SchlossLab/Schloss_WNWN_mSphere_2023. All simulations 
and analyses were performed using R and bash scripts using Snakemake (v.7.24.0) 
to track dependencies and automate the pipeline and Conda (v.4.12.0) and mamba 
(v.1.1.0) to specify software and package versions (see workflow/envs/nr-base.yml in the 
repository). This article was written as an R markdown document and rendered using 
the rmarkdown R package (v.2.18). All figures were generated using dplyr (v.1.1.0) and 
ggplot2 (v.3.4.2) from the tidyverse metapackage (v.1.3.2) and ggtext (v.0.1.2) and ggh4x 
(v.0.2.4) within R (v.4.2.2; see workflow/envs/nr-modern.yml in the repository).

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Supplemental Materials (mSphere00355-23-S0001.pdf). Supplemental text and 
figures.
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