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ABSTRACT Assigning amplicon sequences to operational taxonomic units (OTUs) is
an important step in characterizing microbial communities across large data sets. A no-
table difference between de novo clustering and database-dependent reference cluster-
ing methods is that OTU assignments from de novo methods may change when new
sequences are added. However, one may wish to incorporate new samples to previ-
ously clustered data sets without clustering all sequences again, such as when compar-
ing across data sets or deploying machine learning models. Existing reference-based
methods produce consistent OTUs but only consider the similarity of each query
sequence to a single reference sequence in an OTU, resulting in assignments that are
worse than those generated by de novo methods. To provide an efficient method to fit
sequences to existing OTUs, we developed the OptiFit algorithm. Inspired by the de
novo OptiClust algorithm, OptiFit considers the similarity of all pairs of reference and
query sequences to produce OTUs of the best possible quality. We tested OptiFit using
four data sets with two strategies: (i) clustering to a reference database and (ii) splitting
the data set into a reference and query set, clustering the references using OptiClust,
and then clustering the queries to the references. The result is an improved implemen-
tation of reference-based clustering. OptiFit produces OTUs of a quality similar to that
of OptiClust at faster speeds when using the split data set strategy. OptiFit provides a
suitable option for users requiring consistent OTU assignments at the same quality as
afforded by de novo clustering methods.

IMPORTANCE Advancements in DNA sequencing technology have allowed researchers
to affordably generate millions of sequence reads from microorganisms in diverse envi-
ronments. Efficient and robust software tools are needed to assign microbial sequences
into taxonomic groups for characterization and comparison of communities. The
OptiClust algorithm produces high-quality groups by comparing sequences to each
other, but the assignments can change when new sequences are added to a data set,
making it difficult to compare different studies. Other approaches assign sequences to
groups by comparing them to sequences in a reference database to produce consistent
assignments, but the quality of the groups produced is reduced compared to that with
OptiClust. We developed OptiFit, a new reference-based algorithm that produces con-
sistent yet high-quality assignments like OptiClust. OptiFit allows researchers to com-
pare microbial communities across different studies or add new data to existing studies
without sacrificing the quality of the group assignments.

KEYWORDS 16S rRNA gene, bioinformatics, clustering, metagenomics, microbial
ecology, microbiome

Amplicon sequencing is a mainstay of microbial ecology. Researchers can affordably
generate millions of sequences to characterize the composition of hundreds of

samples from microbial communities without the need for culturing. In many analysis
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pipelines, 16S rRNA gene sequences are assigned to operational taxonomic units
(OTUs) to facilitate comparison of taxonomic composition between communities to
avoid the need for taxonomic classification. A distance threshold of 3% (or sequence
similarity of 97%) is commonly used to cluster sequences into OTUs based on pairwise
comparisons of the sequences within the data set. The method chosen for clustering
affects the quality of OTU assignments and thus may impact downstream analyses of
community composition (1–3). OTU quality can be conceptualized as how well the
OTU assignments match the definition set by the distance threshold, i.e., whether
sequence pairs that are at least as similar as the distance threshold are assigned to the
same OTU and sequence pairs that are more dissimilar than the distance threshold are
assigned to different OTUs.

There are two main categories of OTU clustering algorithms: de novo and reference
based. OptiClust is a de novo clustering algorithm which uses the distance score
between all pairs of sequences in the data set to cluster them into OTUs by maximizing
the Matthews correlation coefficient (MCC) (1). This approach takes into account the
distances between all pairs of sequences when assigning query sequences to OTUs, in
contrast to other de novo methods such as the greedy clustering algorithms imple-
mented in USEARCH and VSEARCH (4, 5). In methods employing greedy clustering
algorithms, only the distance between each sequence and a representative centroid
sequence in the OTU is considered while clustering. As a result, distances between
pairs of sequences in the same OTU are frequently larger than the specified threshold,
i.e., they are false positives. In contrast, the OptiClust algorithm takes into account the
distance between all pairs of sequences when considering how to cluster sequences
into OTUs and is thus less willing to take on false positives.

A limitation of de novo clustering is that different OTU assignments will be pro-
duced when new sequences are added to a data set, making it difficult to use de novo
clustering to compare OTUs between different studies. Furthermore, since de novo
clustering requires calculating and comparing distances between all sequences in a
data set, the execution time can be slow and memory requirements can be prohibitive
for very large data sets. Reference clustering attempts to overcome the limitations of
de novo clustering methods by using a representative set of sequences from a data-
base, with each reference sequence seeding an OTU. Commonly, the Greengenes set
of representative full-length sequences clustered at 97% similarity is used as the refer-
ence with VSEARCH (5–7). Query sequences are then clustered into OTUs based on
their similarity to the reference sequences. Any query sequences that are not within
the distance threshold to any of the reference sequences are either thrown out (closed
reference clustering) or clustered de novo to create additional OTUs (open reference
clustering). While reference-based clustering is generally fast, it is limited by the diver-
sity of the reference database. Novel sequences in the sample will be lost in closed ref-
erence mode if they are not represented by a similar sequence in the database. We
previously found that the OptiClust de novo clustering algorithm created the highest-
quality OTU assignments of all clustering methods (1).

To overcome the limitations of current reference-based and de novo clustering algo-
rithms while maintaining OTU quality, we developed OptiFit, a reference-based cluster-
ing algorithm. While other tools represent reference OTUs with a single sequence,
OptiFit uses all sequences in existing OTUs as the reference and fits new sequences to
those reference OTUs. In contrast to other tools, OptiFit considers all pairwise distance
scores between reference and query sequences when assigning sequences to OTUs in
order to produce OTUs of the highest possible quality. In this study, we tested the
OptiFit algorithm with the reference as a public database (e.g., Greengenes) or de novo
OTUs generated using a reference set from the full data set and compared the per-
formance to those of existing tools. To evaluate the OptiFit algorithm and compare it
to existing methods, we used four published data sets isolated from soil (8), marine (9),
mouse gut (10), and human gut (11) samples. OptiFit is available within the mothur
software program.
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RESULTS
The OptiFit algorithm. OptiFit leverages the method employed by OptiClust of

iteratively assigning sequences to OTUs to produce the highest-quality OTUs possible
and extends this method for reference-based clustering. OptiClust first seeds each
sequence into its own OTU as a singleton. Then for each sequence, OptiClust considers
whether the sequence should move to a different OTU or remain in its current OTU,
choosing the option that results in a better MCC score (1). The MCC uses all values
from a confusion matrix and ranges from negative one to one, with a score of one
occurring when all sequence pairs are true positives and true negatives, a score of neg-
ative one occurring when all pairs are false positives and false negatives, and a score of
zero when there are equal numbers of true and false assignments (i.e., no better than
random guessing). Sequence pairs that are similar to each other (i.e., within the dis-
tance threshold) are counted as true positives if they are clustered into the same OTU
and false negatives if they are not in the same OTU. Sequence pairs that are not similar
to each other are true negatives if they are not clustered into the same OTU and are
false positives if they are in the same OTU. Thus, a pair of sequences is considered cor-
rectly assigned when their OTU assignment matches the OTU definition set by the dis-
tance threshold. OptiClust iterations continue until the MCC stabilizes or until a maxi-
mum number of iterations is reached. This process produces de novo OTU assignments
with the most optimal MCC given the input sequences.

OptiFit begins where OptiClust ends, starting with a list of reference OTUs and their
sequences, a list of query sequences to cluster to the reference OTUs, and the
sequence pairs that are within the distance threshold (e.g., 0.03) (Fig. 1). Initially, all
query sequences are placed into separate OTUs. Then, the algorithm iteratively reas-
signs the query sequences to the reference OTUs to optimize the MCC. Alternatively, a
sequence will remain unassigned if the MCC value is maximized when the sequence is
a singleton rather than clustered into a reference OTU. All query and reference
sequence pairs are considered when calculating the MCC. This process is repeated until
the MCC changes by no more than 0.0001 (default) or until a maximum number of iter-
ations is reached (default: 100). In the closed reference mode, any query sequences
that cannot be clustered into reference OTUs are discarded, and the results only con-
tain OTUs that exist in the original reference. In the open reference mode, unassigned
query sequences are clustered de novo using OptiClust to generate new OTUs. The final
MCC is reported with the best OTU assignments. There are two strategies for generat-
ing OTUs with OptiFit: (i) cluster the query sequences to reference OTUs generated by
de novo clustering an independent database and (ii) split the data set into a reference
and query fraction, cluster the reference sequences de novo, and then cluster the query
sequences to the reference OTUs.

Reference clustering with public databases. To test how OptiFit performs for ref-
erence-based clustering, we clustered each data set to three databases of reference
OTUs: the Greengenes database v13_8_99 (6), the SILVA nonredundant database v132
(12), and the Ribosomal Database Project (RDP) v16 (13). Reference OTUs for each data-
base were created by performing de novo clustering with OptiClust at a distance
threshold of 3% using the V4 region of each sequence (Fig. 2). After trimming to the
V4 region, the databases contained 174,979, 16,192, and 173,648 unique sequences
and produced de novo MCC scores of 0.72, 0.74, and 0.73 for Greengenes, RDP, and
SILVA, respectively. Clustering query sequences with OptiFit to Greengenes and SILVA
in closed reference mode performed similarly, with median MCC scores of 0.85 and
0.77, respectively, while the median MCC was 0.35 when clustering to RDP (Fig. 3; “db:
Greengenes,” “db: SILVA,” and “db: RDP”). For comparison, clustering data sets with
OptiClust produced an average MCC score of 0.86 (Fig. 3; “de novo”). This gap in OTU
quality mostly disappeared when clustering in open reference mode, which produced
median MCCs of 0.86 with Greengenes, 0.86 with SILVA, and 0.86 with the RDP. Thus,
open reference OptiFit produced OTUs of a quality very similar to that of de novo
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clustering with OptiClust, and closed reference OptiFit followed closely behind as long
as a suitable reference database was chosen.

Since closed reference clustering does not cluster query sequences that could not
be clustered into reference OTUs, an additional measure of clustering performance to
consider is the fraction of query sequences that were able to be clustered. On average,
more sequences were clustered with Greengenes as the reference (59%) than with
SILVA (50%) or with the RDP (9.7%) (Fig. 3). This mirrored the result reported above
that Greengenes produced better OTUs in terms of MCC score than either SILVA or
RDP. Note that de novo and open reference clustering methods always cluster 100% of
sequences into OTUs. The database chosen affects the final closed reference OTU
assignments considerably in terms of both MCC score and fraction of query sequences
that could be clustered into the reference OTUs.

Despite the drawbacks, closed reference methods have been used when fast execu-
tion speed is required, such as when using very large data sets (14). To compare perform-
ance in terms of speed, we repeated each OptiFit and OptiClust run 100 times and meas-
ured the execution time. Across all data set and database combinations, closed reference
OptiFit outperformed both OptiClust and open reference OptiFit (Fig. 3). For example,
with the human data set fit to SILVA reference OTUs, the average run times in seconds
were 406.8 for closed reference OptiFit, 455.3 for de novo clustering the data set, and

FIG 1 Here, we present a toy example of the OptiFit algorithm fitting query sequences to existing OTUs,
given the list of all sequence pairs that are within the distance threshold of 3%. Previously, 50 reference
sequences were clustered de novo with OptiClust (see the OptiClust supplemental material for reference 1).
Reference sequences A through Q (colored orange) were within the distance threshold to at least one
other reference sequence; the remaining reference sequences formed additional singleton OTUs (data not
shown). The goal of OptiFit is to assign the query sequences W through Z (colored green) to the reference
OTUs. Here, there are 50 reference sequences and 4 query sequences which make 1,431 sequence pairs, of
which 23 pairs are within the 3% distance threshold. Initially (step 1), OptiFit places each query sequence in
its own OTU, resulting in 14 true positives, 9 false negatives, 0 false positives, and 1,408 true negatives for
an MCC score of 0.78. Then, for each query sequence (in boldface), OptiFit determines what the new MCC
score would be if that sequence were moved to one of the OTUs containing at least one other similar
sequence (steps 2 to 4). The sequence is then moved to the OTU which would result in the best MCC
score. OptiFit stops iterating over sequences once the MCC score stabilizes. In this example, only one
iteration over each sequence was needed. Note that sequence Z was dissimilar to all other sequences and
thus remained a singleton. The final MCC score is 0.91, with 20 true positives, 3 false negatives, 1 false
positive, and 1,407 true negatives.
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559.4 for open reference OptiFit. Thus, the OptiFit algorithm continues the precedent
that closed reference clustering sacrifices OTU quality for execution speed.

To compare to the reference clustering methods used by QIIME2, we clustered each
data set with VSEARCH against the Greengenes database of OTUs previously clustered at
97% sequence similarity. Each reference OTU from the Greengenes 97% database con-
tains one reference sequence, and VSEARCH maps sequences to the reference based on
each individual query sequence’s similarity to the single reference sequence. In contrast,
OptiFit accepts reference OTUs which each may contain multiple sequences, and the
sequence similarity between all query and reference sequences is considered when
assigning sequences to OTUs. In closed reference mode, OptiFit produced 27.2% higher-
quality OTUs than VSEARCH in terms of MCC score, but VSEARCH was able to cluster
24.9% more query sequences than OptiFit to the Greengenes reference database (Fig. 3).
This is because VSEARCH only considers the distances between each query sequence to
the single reference sequence, while OptiFit considers the distances between all pairs of
reference and query sequences in an OTU. When open reference clustering, OptiFit pro-
duced higher-quality OTUs than VSEARCH against the Greengenes database, with median
MCC scores of 0.86 and 0.56, respectively. In terms of run time, OptiFit outperformed
VSEARCH in both closed and open reference mode by 53.6% and 44.0% on average,
respectively. Thus, the more stringent OTU definition employed by OptiFit, which prefers
the query sequence to be similar to all other sequences in the OTU rather than to only
one sequence, resulted in fewer sequences being clustered to reference OTUs than when
using VSEARCH but caused OptiFit to outperform VSEARCH in terms of both OTU quality
and execution time.

Reference clustering with split data sets. When performing reference clustering
against public databases, the database chosen greatly affects the quality of OTUs pro-
duced. OTU quality may be poor when the reference database consists of sequences
that are too unrelated to the samples of interest, such as when samples contain novel
populations. While de novo clustering overcomes the quality limitations of reference
clustering to databases, OTU assignments are not consistent when new sequences are
added. Researchers may wish to cluster new sequences to existing OTUs or to compare
OTUs across studies. To determine how well OptiFit performs for clustering new
sequences to existing OTUs, we employed a split data set strategy, where each data

FIG 2 Reference sequences from Greengenes, the RDP, and SILVA were downloaded, preprocessed
with mothur by trimming to the V4 region, and clustered de novo with OptiClust for 100 repetitions.
Data sets from human, marine, mouse, and soil microbiomes were downloaded, preprocessed with
mothur by aligning to the SILVA V4 reference alignment, and then clustered de novo with OptiClust
for 100 repetitions. Individual data sets were fit to reference databases with OptiFit; OptiFit was
repeated 100 times for each data set and database combination. Data sets were also randomly split
into reference and query fractions, and the query sequences were fit to the reference sequences with
OptiFit for 100 repetitions. The final MCC score was reported for all OptiClust and OptiFit repetitions.
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set was randomly split into a reference fraction and a query fraction. Reference sequen-
ces were clustered de novo with OptiClust, and then query sequences were clustered
to the de novo OTUs with OptiFit.

First, we tested whether OptiFit performed as well as de novo clustering when using
the split data set strategy with half of the sequences selected for the reference by a sim-
ple random sample (a 50% split) (Fig. 3; “self-split”). OTU quality was similar to that from
OptiClust regardless of mode (0.031% difference in median MCC). In closed reference
mode, OptiFit was able to cluster 84.9% of query sequences to reference OTUs with the
split strategy, a great improvement over the average 59% of sequences clustered to the
Greengenes database. In terms of run time, closed and open reference OptiFit performed
faster than OptiClust on whole data sets by 39.6% and 36.8%, respectively. Random
access memory (RAM) usages were similar, with OptiFit requiring slightly more RAM in
gigabytes than OptiClust. Open and closed reference OptiFit required 1.8% and 1.2%
more RAM than OptiClust, respectively (data not shown). The split data set strategy also
performed 6.7% faster than the database strategy in closed reference mode and 65.5%
faster in open reference mode. Thus, reference clustering with the split data set strategy

FIG 3 The median MCC score, fraction of query sequences that mapped in closed reference clustering, and runtime in
seconds from repeating each clustering method 100 times. Each data set underwent three clustering strategies: (i) de
novo clustering of the whole data set using OptiClust, (ii) splitting the data set with 50% of the sequences as a
reference set and the other 50% as a query set, clustering the references using OptiClust, and then clustering the
query sequences to the reference OTUs with OptiFit, and (iii) clustering the data set to a reference database
(Greengenes, SILVA, or RDP). Reference-based clustering was repeated with open and closed modes. For additional
comparison, VSEARCH was used for de novo and reference-based clustering against the Greengenes database.
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creates OTUs of as high a quality as de novo clustering yet at a faster run time, and it fits
far more query sequences than the database strategy.

While we initially tested this strategy using a 50% split of the data into reference
and query fractions, we next investigated whether there was an optimal reference frac-
tion size. To identify the best reference size, reference sets with 10% to 90% of the
sequences were created, with the remaining sequences used for the query (Fig. 4).
OTU quality was remarkably consistent across reference fraction sizes. For example,
splitting the human data set 100 times yielded a coefficient of variation (i.e., the stand-
ard deviation divided by the mean) of 0.0018 for the MCC score across all fractions.
Run time generally decreased as the reference fraction increased; for the human data
set, the median run time was 364.0 s with 10% of sequences in the reference and

FIG 4 The median MCC score, fraction of query sequences that mapped in closed reference clustering, and runtime in
seconds from repeating each clustering method 100 times. Each data set was split into reference and query fractions.
Reference sequences were selected via a simple random sample, weighting sequences by relative abundance, or
weighting by similarity to other sequences in the data set. With the simple random sample method, data set splitting
was repeated with reference fractions ranging from 10% to 90% of the data set and for 100 random seeds. De novo
clustering each data set with OptiClust is also shown for comparison.

OptiFit: Improved Reference-Based Clustering

January/February 2022 Volume 7 Issue 1 e00916-21 msphere.asm.org 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
14

 F
eb

ru
ar

y 
20

22
 b

y 
65

.1
83

.1
70

.1
85

.

https://msphere.asm.org


290.8 s with 90% of sequences in the reference. The RAM usage was virtually the same
across reference fraction sizes, with a coefficient of variation of 0.00089 for the human
data set (data not shown). In closed reference mode, the fraction of sequences that
mapped increased as the reference size increased; for the human data set, the median
fraction mapped was 0.85 with 10% of sequences in the reference and 0.95 with 90%
of sequences in the reference. These trends held for the other data sets as well. Thus,
the reference fraction did not affect OTU quality in terms of MCC score or the memory
usage, but it did affect the run time and the fraction of sequences that mapped during
the closed reference clustering.

After testing the split strategy using a simple random sample to select the reference
sequences, we investigated other methods of splitting the data. We tested three meth-
ods for selecting the fraction of sequences to be used as the reference at a size of 50%:
a simple random sample, weighting sequences by relative abundance, and weighting
by similarity to other sequences in the data set (Fig. 4). OTU quality in terms of MCC
was similar across all three sampling methods (median MCC of 0.86). In closed refer-
ence clustering mode, the fractions of sequences that mapped were similar for simple
and abundance-weighted sampling (median fractions mapped of 0.85 and 0.84,
respectively) but worse for similarity-weighted sampling (median fraction mapped of
0.56). While simple and abundance-weighted sampling produced better-quality OTUs
than similarity-weighted sampling, OptiFit performed faster on similarity-weighted
samples, with a median runtime of 103.9 s, compared to 135.4 and 134.8 s for simple
and abundance-weighted sampling, respectively. Thus, employing more complicated
sampling strategies such as abundance-weighted and similarity-weighted sampling
did not confer any advantages over selecting the reference via a simple random sam-
ple and in fact decreased OTU quality in the case of similarity-weighted sampling.

DISCUSSION

We developed a new algorithm for clustering sequences to existing OTUs and have
demonstrated its suitability for reference-based clustering. OptiFit makes the iterative
method employed by OptiClust available for tasks where reference-based clustering is
required. We have shown that degrees of OTU quality are similar between OptiClust
and OptiFit in open reference mode, regardless of strategy employed. Open reference
OptiFit performs slower than OptiClust due to the additional de novo clustering step,
so users may prefer OptiClust for tasks that do not require reference OTUs.

When clustering to public databases, OTU quality dropped in closed reference mode
to different degrees depending on the database and data set source, and no more than
half of query sequences were able to be clustered into OTUs across any data set/database
combination. This may reflect limitations of reference databases, which are unlikely to
contain sequences from novel microbes. This drop in quality was most notable with the
RDP reference, which contained only 16,192 sequences, compared to 173,648 sequences
in SILVA and 174,979 in Greengenes. Note that Greengenes has not been updated since
2013 at the time of this writing, while SILVA and the RDP are updated regularly. We rec-
ommend that users who require an independent reference database opt for large
databases with regular updates and good coverage of microbial diversity for their
environment. Since OptiClust still performs faster than open reference OptiFit and cre-
ates higher-quality OTUs than closed reference OptiFit with the database strategy, we
recommend using OptiClust rather than clustering to a database whenever consistent
OTUs are not required.

The OptiClust and OptiFit algorithms produced higher-quality OTUs than VSEARCH
in open reference, closed reference, and de novo modes. However, VSEARCH was able
to cluster more sequences to OTUs than OptiFit in closed reference mode. While both
OptiFit and VSEARCH use a distance or similarity threshold for determining how to
cluster sequences into OTUs, VSEARCH is more permissive than OptiFit regardless of
mode. The OptiFit and OptiClust algorithms use all of the sequences to define an OTU,
preferring that all pairs of sequences (including reference and query sequences) in an
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OTU are within the distance threshold in order to maximize the MCC. In contrast,
VSEARCH only requires each query sequence to be similar to the single centroid
sequence that seeded the OTU, thus allowing pairs of query sequences to be less simi-
lar to each other than the threshold specified. Because of this, VSEARCH sacrifices OTU
quality by allowing more dissimilar sequences to be clustered into the same OTUs.

When clustering with the split data set strategy, OTU quality was remarkably similar
when reference sequences were selected by a simple random sample or weighted by
abundance, but quality was slightly worse when sequences were weighted by similar-
ity. We recommend using a simple random sample since the more sophisticated refer-
ence selection methods do not offer any benefit. The similarity in OTU quality between
OptiClust and OptiFit with this strategy demonstrates the suitability of using OptiFit to
cluster sequences to existing OTUs, such as when comparing OTUs across studies.
However, when consistent OTUs are not required, we recommend using OptiClust for
de novo clustering over the split strategy with OptiFit since OptiClust is simpler to exe-
cute but performs similarly in terms of both run time and OTU quality.

Unlike existing reference-based methods that cluster query sequences to a single
centroid sequence in each reference OTU, OptiFit considers all sequences in each refer-
ence OTU when clustering query sequences, resulting in OTUs of a similar high quality
as those produced by the de novo OptiClust algorithm. Potential applications include
clustering sequences to reference databases, comparing taxonomic composition of
microbiomes across different studies, and using OTU-based machine learning models
to make predictions on new data. OptiFit fills the missing option for clustering query
sequences to existing OTUs that does not sacrifice OTU quality for consistency of OTU
assignments.

MATERIALS ANDMETHODS
Data processing steps. We downloaded 16S rRNA gene amplicon sequences from four published

data sets isolated from soil (8), marine (9), mouse gut (10), and human gut (11) samples. These data sets
contain sequences from the V4 region of the 16S rRNA gene and represent a selection of the broad
types of natural communities that microbial ecologists study. We processed the raw sequences using
mothur according to the Schloss Lab MiSeq SOP (15) and accompanying study by Kozich et al. (16).
These steps included trimming and filtering for quality, aligning to the SILVA reference alignment (12),
discarding sequences that aligned outside the V4 region, removing chimeric reads with UCHIME (17),
and calculating distances between all pairs of sequences within each data set prior to clustering.

Reference database clustering. To generate reference OTUs from public databases, we down-
loaded sequences from the Greengenes database (v13_8_99) (6), SILVA nonredundant database (v132)
(12), and the Ribosomal Database Project (v16) (13). These sequences were processed using the same
steps as outlined above followed by clustering sequences into de novo OTUs with OptiClust. Processed
reads from each of the four data sets were clustered with OptiFit to the reference OTUs generated from
each of the three databases. When reference clustering with VSEARCH, processed data sets were clus-
tered directly to the unprocessed Greengenes 97% OTU reference alignment, since this method is how
VSEARCH is typically used by the QIIME2 software for reference-based clustering (7, 18).

Split data set clustering. For each data set, half of the sequences were selected to be clustered de
novo into reference OTUs with OptiClust. We used three methods for selecting the subset of sequences
to be used as the reference: a simple random sample, weighting sequences by relative abundance, and
weighting by similarity to other sequences in the data set. Data set splitting was repeated with 100 ran-
dom seeds. With the simple random sampling method, data set splitting was also repeated with refer-
ence fractions ranging from 10% to 90% of the data set. For each data set split, the remaining query
sequences were clustered into the reference OTUs with OptiFit.

Benchmarking. OptiClust and OptiFit randomize the order of query sequences prior to clustering
and employ a random number generator to break ties when OTU assignments are of equal quality. As a
result, they produce slightly different OTU assignments when repeated with different random seeds. To
capture any variation in OTU quality or execution time, clustering was repeated with 100 random seeds
for each combination of parameters and input data sets. We used the benchmark feature provided by
Snakemake to measure the run time of every clustering job. We calculated the MCC on each set of OTUs
to quantify the quality of clustering, as described by Westcott and Schloss (1).

Data availability. We implemented the analysis workflow in Snakemake (19) and wrote scripts in R
(20), Python (21), and GNU bash (22). Software used includes mothur v1.47.0 (23), VSEARCH v2.15.2 (5),
the Tidyverse metapackage (24), R Markdown (25), ggraph (26), ggtext (27), numpy (28), the SRA toolkit
(29), and conda (30). The complete workflow and supporting files required to reproduce this study are
available at https://github.com/SchlossLab/Sovacool_OptiFit_mSphere_2022.
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