
mikropml: User-Friendly R Package for Supervised
Machine Learning Pipelines
Begüm D. Topçuoğlu∗3, 4, Zena Lapp†1, Kelly L. Sovacool‡1, Evan
Snitkin3, 5, Jenna Wiens2, and Patrick D. Schloss§3

1 Department of Computational Medicine & Bioinformatics, University of Michigan 2 Department
of Electrical Engineering & Computer Science, University of Michigan 3 Department of
Microbiology & Immunology, University of Michigan 4 Exploratory Science Center, Merck & Co.,
Inc., Cambridge, Massachusetts, USA. 5 Department of Internal Medicine/Division of Infectious
Diseases, University of Michigan

DOI: 10.21105/joss.03073

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @JonnyTran
• @FedericoComoglio

Submitted: 03 December 2020
Published: 14 May 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Machine learning (ML) for classification and prediction based on a set of features is used to
make decisions in healthcare, economics, criminal justice and more. However, implementing an
ML pipeline including preprocessing, model selection, and evaluation can be time-consuming,
confusing, and difficult. Here, we present mikropml (prononced “meek-ROPE em el”), an
easy-to-use R package that implements ML pipelines using regression, support vector ma-
chines, decision trees, random forest, or gradient-boosted trees. The package is available on
GitHub, CRAN, and conda.

Statement of need

Most applications of machine learning (ML) require reproducible steps for data pre-processing,
cross-validation, testing, model evaluation, and often interpretation of why the model makes
particular predictions. Performing these steps is important, as failure to implement them can
result in incorrect and misleading results (Teschendorff, 2019; Wiens et al., 2019).
Supervised ML is widely used to recognize patterns in large datasets and to make predictions
about outcomes of interest. Several packages including caret (Kuhn, 2008) and tidymod
els (Kuhn et al., 2020) in R, scikitlearn (Pedregosa et al., 2011) in Python, and the
H2O autoML platform (H2O.ai, 2020) allow scientists to train ML models with a variety of
algorithms. While these packages provide the tools necessary for each ML step, they do not

∗co-first author
†co-first author
‡co-first author
§corresponding author

Topçuoğlu et al., (2021). mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines. Journal of Open Source Software,
6(61), 3073. https://doi.org/10.21105/joss.03073

1

https://doi.org/10.21105/joss.03073
https://github.com/openjournals/joss-reviews/issues/3073
https://github.com/SchlossLab/mikropml
https://doi.org/10.5281/zenodo.4759346
http://arfon.org/
https://github.com/JonnyTran
https://github.com/FedericoComoglio
http://creativecommons.org/licenses/by/4.0/
http://www.schlosslab.org/mikropml/
https://github.com/SchlossLab/mikropml/
https://cran.r-project.org/package=mikropml
https://anaconda.org/conda-forge/r-mikropml
https://doi.org/10.21105/joss.03073


implement a complete ML pipeline according to good practices in the literature. This makes
it difficult for practitioners new to ML to easily begin to perform ML analyses.
To enable a broader range of researchers to apply ML to their problem domains, we created
mikropml, an easy-to-use R package (R Core Team, 2020) that implements the ML pipeline
created by Topçuoğlu et al. (Topçuoğlu et al., 2020) in a single function that returns a trained
model, model performance metrics and feature importance. mikropml leverages the caret
package to support several ML algorithms: linear regression, logistic regression, support vector
machines with a radial basis kernel, decision trees, random forest, and gradient boosted trees.
It incorporates good practices in ML training, testing, and model evaluation (Teschendorff,
2019; Topçuoğlu et al., 2020). Furthermore, it provides data preprocessing steps based on
the FIDDLE (FlexIble Data-Driven pipeLinE) framework outlined in Tang et al. (Tang et al.,
2020) and post-training permutation importance steps to estimate the importance of each
feature in the models trained (Breiman, 2001; Fisher et al., 2018).
mikropml can be used as a starting point in the application of ML to datasets from many
different fields. It has already been applied to microbiome data to categorize patients with
colorectal cancer (Topçuoğlu et al., 2020), to identify differences in genomic and clinical
features associated with bacterial infections (Lapp et al., 2020), and to predict gender-based
biases in academic publishing (Hagan et al., 2020).

mikropml package

The mikropml package includes functionality to preprocess the data, train ML models, evalu-
ate model performance, and quantify feature importance (Figure 1). We also provide vignettes
and an example Snakemake workflow (Köster & Rahmann, 2012) to showcase how to run an
ideal ML pipeline with multiple different train/test data splits. The results can be visualized
using helper functions that use ggplot2 (Wickham, 2016).
While mikropml allows users to get started quickly and facilitates reproducibility, it is not
a replacement for understanding the ML workflow which is still necessary when interpreting
results (Pollard et al., 2019). To facilitate understanding and enable one to tailor the code
to their application, we have heavily commented the code and have provided supporting
documentation which can be read online.

Preprocessing data

We provide the function preprocess_data() to preprocess features using several different
functions from the caret package. preprocess_data() takes continuous and categori-
cal data, re-factors categorical data into binary features, and provides options to normalize
continuous data, remove features with near-zero variance, and keep only one instance of per-
fectly correlated features. We set the default options based on those implemented in FIDDLE
(Tang et al., 2020). More details on how to use preprocess_data() can be found in the
accompanying vignette.

Running ML

The main function in mikropml, run_ml(), minimally takes in the model choice and a data
frame with an outcome column and feature columns. For model choice, mikropml currently
supports logistic and linear regression (glmnet: Friedman et al., 2010), support vector ma-
chines with a radial basis kernel (kernlab: Karatzoglou et al., 2004), decision trees (rpart:
Therneau et al., 2019), random forest (randomForest: Liaw & Wiener, 2002), and gradient-
boosted trees (xgboost: Chen et al., 2020). run_ml() randomly splits the data into train

Topçuoğlu et al., (2021). mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines. Journal of Open Source Software,
6(61), 3073. https://doi.org/10.21105/joss.03073

2

https://github.com/SchlossLab/mikropml/
http://www.schlosslab.org/mikropml/articles/index.html
https://github.com/SchlossLab/mikropml-snakemake-workflow
http://www.schlosslab.org/mikropml/
http://www.schlosslab.org/mikropml/articles/preprocess.html
https://doi.org/10.21105/joss.03073


and test sets while maintaining the distribution of the outcomes found in the full dataset.
It also provides the option to split the data into train and test sets based on categorical
variables (e.g. batch, geographic location, etc.). mikropml uses the caret package (Kuhn,
2008) to train and evaluate the models, and optionally quantifies feature importance. The
output includes the best model built based on tuning hyperparameters in an internal and
repeated cross-validation step, model evaluation metrics, and optional feature importances.
Feature importances are calculated using a permutation test, which breaks the relationship
between the feature and the true outcome in the test data, and measures the change in model
performance. This provides an intuitive metric of how individual features influence model
performance and is comparable across model types, which is particularly useful for model
interpretation (Topçuoğlu et al., 2020). Our introductory vignette contains a comprehensive
tutorial on how to use run_ml().

Figure 1: mikropml pipeline

Ideal workflow for running mikropml with many different train/test splits

To investigate the variation in model performance depending on the train and test set used
(Lapp et al., 2020; Topçuoğlu et al., 2020), we provide examples of how to run_ml() many
times with different train/test splits and how to get summary information about model per-
formance on a local computer or on a high-performance computing cluster using a Snakemake
workflow.

Tuning & visualization

One particularly important aspect of ML is hyperparameter tuning. We provide a reasonable
range of default hyperparameters for each model type. However practitioners should explore
whether that range is appropriate for their data, or if they should customize the hyperparameter
range. Therefore, we provide a function plot_hp_performance() to plot the cross-validation
performance metric of a single model or models built using different train/test splits. This
helps evaluate if the hyperparameter range is being searched exhaustively and allows the user
to pick the ideal set. We also provide summary plots of test performance metrics for the
many train/test splits with different models using plot_model_performance(). Examples
are described in the accompanying vignette on hyperparameter tuning.

Topçuoğlu et al., (2021). mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines. Journal of Open Source Software,
6(61), 3073. https://doi.org/10.21105/joss.03073

3

http://www.schlosslab.org/mikropml/articles/introduction.html
http://www.schlosslab.org/mikropml/articles/parallel.html
https://github.com/SchlossLab/mikropml-snakemake-workflow
https://github.com/SchlossLab/mikropml-snakemake-workflow
http://www.schlosslab.org/mikropml/articles/tuning.html
https://doi.org/10.21105/joss.03073


Dependencies

mikropml is written in R (R Core Team, 2020) and depends on several packages: dplyr
(Wickham et al., 2020), rlang (Henry et al., 2020) and caret (Kuhn, 2008). The ML
algorithms supported by mikropml require: glmnet (Friedman et al., 2010), e1071 (Meyer
et al., 2020), and MLmetrics (Yan, 2016) for logistic regression, rpart2 (Therneau et al.,
2019) for decision trees, randomForest (Liaw & Wiener, 2002) for random forest, xgboost
(Chen et al., 2020) for xgboost, and kernlab (Karatzoglou et al., 2004) for support vector
machines. We also allow for parallelization of cross-validation and other steps using the
foreach, doFuture, future.apply, and future packages (Bengtsson & Team, 2020).
Finally, we use ggplot2 for plotting (Wickham, 2016).

Acknowledgments

We thank members of the Schloss Lab who participated in code clubs related to the ini-
tial development of the pipeline, made documentation improvements, and provided general
feedback. We also thank Nick Lesniak for designing the mikropml logo.
We thank the US Research Software Sustainability Institute (NSF #1743188) for providing
training to KLS at the Winter School in Research Software Engineering.

Funding

Salary support for PDS came from NIH grant 1R01CA215574. KLS received support from
the NIH Training Program in Bioinformatics (T32 GM070449). ZL received support from the
National Science Foundation Graduate Research Fellowship Program under Grant No. DGE
1256260. Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

Author contributions

BDT, ZL, and KLS contributed equally. Author order among the co-first authors was deter-
mined by time since joining the project.
BDT, ZL, and KLS conceptualized the study and wrote the code. KLS structured the code
in R package form. BDT, ZL, JW, and PDS developed methodology. PDS, ES, and JW
supervised the project. BDT, ZL, and KLS wrote the original draft. All authors reviewed and
edited the manuscript.

Conflicts of interest

None.

References

Bengtsson, H., & Team, R. C. (2020). Future.apply: Apply Function to Elements in Parallel
using Futures.

Topçuoğlu et al., (2021). mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines. Journal of Open Source Software,
6(61), 3073. https://doi.org/10.21105/joss.03073

4

https://doi.org/10.21105/joss.03073


Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.
1023/A:1010933404324

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R.,
Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., & implementation), X.
contributors (base. X. (2020). Xgboost: Extreme Gradient Boosting.

Fisher, A., Rudin, C., & Dominici, F. (2018). All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models simulta-
neously.

Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. https:
//doi.org/10.18637/jss.v033.i01

H2O.ai. (2020). H2O: Scalable machine learning platform [Manual].
Hagan, A. K., Topçuoğlu, B. D., Gregory, M. E., Barton, H. A., & Schloss, P. D. (2020).

Women Are Underrepresented and Receive Differential Outcomes at ASM Journals: A
Six-Year Retrospective Analysis. mBio, 11(6). https://doi.org/10.1128/mBio.01680-20

Henry, L., Wickham, H., & RStudio. (2020). Rlang: Functions for Base Types and Core R
and ’Tidyverse’ Features.

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). Kernlab - An S4 Package for
Kernel Methods in R. Journal of Statistical Software, 11(1), 1–20. https://doi.org/10.
18637/jss.v011.i09

Köster, J., & Rahmann, S. (2012). Snakemakea scalable bioinformatics workflow engine.
Bioinformatics, 28(19), 2520–2522. https://doi.org/10.1093/bioinformatics/bts480

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of
Statistical Software, 28(1), 1–26. https://doi.org/10.18637/jss.v028.i05

Kuhn, M., Wickham, H., & RStudio. (2020). Tidymodels: Easily Install and Load the
’Tidymodels’ Packages.

Lapp, Z., Han, J., Wiens, J., Goldstein, E. J., Lautenbach, E., & Snitkin, E. (2020). Ma-
chine learning models to identify patient and microbial genetic factors associated with
carbapenem-resistant Klebsiella pneumoniae infection. medRxiv, 2020.07.06.20147306.
https://doi.org/10.1101/2020.07.06.20147306

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. 2, 5.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., C++-code), C.-C. C. (lib-

svm., & C++-code), C.-C. L. (libsvm. (2020). E1071: Misc Functions of the Department
of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12(85), 2825–2830.

Pollard, T. J., Chen, I., Wiens, J., Horng, S., Wong, D., Ghassemi, M., Mattie, H., Lindemer,
E., & Panch, T. (2019). Turning the crank for machine learning: Ease, at what expense?
The Lancet Digital Health, 1(5), e198–e199. https://doi.org/10.1016/S2589-7500(19)
30112-8

R Core Team. (2020). R: A Language and Environment for Statistical Computing.
Tang, S., Davarmanesh, P., Song, Y., Koutra, D., Sjoding, M. W., & Wiens, J. (2020).

Democratizing EHR analyses with FIDDLE: A flexible data-driven preprocessing pipeline
for structured clinical data. J Am Med Inform Assoc. https://doi.org/10.1093/jamia/
ocaa139

Topçuoğlu et al., (2021). mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines. Journal of Open Source Software,
6(61), 3073. https://doi.org/10.21105/joss.03073

5

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1128/mBio.01680-20
https://doi.org/10.18637/jss.v011.i09
https://doi.org/10.18637/jss.v011.i09
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1101/2020.07.06.20147306
https://doi.org/10.1016/S2589-7500(19)30112-8
https://doi.org/10.1016/S2589-7500(19)30112-8
https://doi.org/10.1093/jamia/ocaa139
https://doi.org/10.1093/jamia/ocaa139
https://doi.org/10.21105/joss.03073


Teschendorff, A. E. (2019). Avoiding common pitfalls in machine learning omic data science.
Nature Materials, 18(5), 422–427. https://doi.org/10.1038/s41563-018-0241-z

Therneau, T., Atkinson, B., port, B. R. (producer. of the initial R., & 1999-2017), maintainer.
(2019). Rpart: Recursive Partitioning and Regression Trees.

Topçuoğlu, B. D., Lesniak, N. A., Ruffin, M. T., Wiens, J., & Schloss, P. D. (2020). A
Framework for Effective Application of Machine Learning to Microbiome-Based Classifi-
cation Problems. mBio, 11(3). https://doi.org/10.1128/mBio.00434-20

Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis. Springer International
Publishing. https://doi.org/10.1007/978-3-319-24277-4

Wickham, H., François, R., Henry, L., Müller, K., & RStudio. (2020). Dplyr: A Grammar of
Data Manipulation.

Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F., Jung, K., Heller,
K., Kale, D., Saeed, M., Ossorio, P. N., Thadaney-Israni, S., & Goldenberg, A. (2019).
Do no harm: A roadmap for responsible machine learning for health care. Nat. Med.,
25(9), 1337–1340. https://doi.org/10.1038/s41591-019-0548-6

Yan, Y. (2016). MLmetrics: Machine Learning Evaluation Metrics.

Topçuoğlu et al., (2021). mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines. Journal of Open Source Software,
6(61), 3073. https://doi.org/10.21105/joss.03073

6

https://doi.org/10.1038/s41563-018-0241-z
https://doi.org/10.1128/mBio.00434-20
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1038/s41591-019-0548-6
https://doi.org/10.21105/joss.03073

	Summary
	Statement of need
	mikropml package
	Preprocessing data
	Running ML
	Ideal workflow for running mikropml with many different train/test splits
	Tuning & visualization
	Dependencies

	Acknowledgments
	Funding
	Author contributions
	Conflicts of interest
	References

