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Summary

Machine learning (ML) for classification and prediction based on a set of features is used to
make decisions in healthcare, economics, criminal justice and more. However, implementing an
ML pipeline including preprocessing, model selection, and evaluation can be time-consuming,
confusing, and difficult. Here, we present mikropml (prononced “meek-ROPE em el”), an
easy-to-use R package that implements ML pipelines using regression, support vector ma-
chines, decision trees, random forest, or gradient-boosted trees. The package is available on
GitHub, CRAN, and conda.

Statement of need

Most applications of machine learning (ML) require reproducible steps for data pre-processing,
cross-validation, testing, model evaluation, and often interpretation of why the model makes
particular predictions. Performing these steps is important, as failure to implement them can
result in incorrect and misleading results (Teschendorff, 2019; Wiens et al., 2019).
Supervised ML is widely used to recognize patterns in large datasets and to make predictions
about outcomes of interest. Several packages including caret (Kuhn, 2008) and tidymod
els (Kuhn et al., 2020) in R, scikitlearn (Pedregosa et al., 2011) in Python, and the
H2O autoML platform (H2O.ai, 2020) allow scientists to train ML models with a variety of
algorithms. While these packages provide the tools necessary for each ML step, they do not
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implement a complete ML pipeline according to good practices in the literature. This makes
it difficult for practitioners new to ML to easily begin to perform ML analyses.
To enable a broader range of researchers to apply ML to their problem domains, we created
mikropml, an easy-to-use R package (R Core Team, 2020) that implements the ML pipeline
created by Topçuoğlu et al. (Topçuoğlu et al., 2020) in a single function that returns a trained
model, model performance metrics and feature importance. mikropml leverages the caret
package to support several ML algorithms: linear regression, logistic regression, support vector
machines with a radial basis kernel, decision trees, random forest, and gradient boosted trees.
It incorporates good practices in ML training, testing, and model evaluation (Teschendorff,
2019; Topçuoğlu et al., 2020). Furthermore, it provides data preprocessing steps based on
the FIDDLE (FlexIble Data-Driven pipeLinE) framework outlined in Tang et al. (Tang et al.,
2020) and post-training permutation importance steps to estimate the importance of each
feature in the models trained (Breiman, 2001; Fisher et al., 2018).
mikropml can be used as a starting point in the application of ML to datasets from many
different fields. It has already been applied to microbiome data to categorize patients with
colorectal cancer (Topçuoğlu et al., 2020), to identify differences in genomic and clinical
features associated with bacterial infections (Lapp et al., 2020), and to predict gender-based
biases in academic publishing (Hagan et al., 2020).

mikropml package

The mikropml package includes functionality to preprocess the data, train ML models, evalu-
ate model performance, and quantify feature importance (Figure 1). We also provide vignettes
and an example Snakemake workflow (Köster & Rahmann, 2012) to showcase how to run an
ideal ML pipeline with multiple different train/test data splits. The results can be visualized
using helper functions that use ggplot2 (Wickham, 2016).
While mikropml allows users to get started quickly and facilitates reproducibility, it is not
a replacement for understanding the ML workflow which is still necessary when interpreting
results (Pollard et al., 2019). To facilitate understanding and enable one to tailor the code
to their application, we have heavily commented the code and have provided supporting
documentation which can be read online.

Preprocessing data

We provide the function preprocess_data() to preprocess features using several different
functions from the caret package. preprocess_data() takes continuous and categori-
cal data, re-factors categorical data into binary features, and provides options to normalize
continuous data, remove features with near-zero variance, and keep only one instance of per-
fectly correlated features. We set the default options based on those implemented in FIDDLE
(Tang et al., 2020). More details on how to use preprocess_data() can be found in the
accompanying vignette.

Running ML

The main function in mikropml, run_ml(), minimally takes in the model choice and a data
frame with an outcome column and feature columns. For model choice, mikropml currently
supports logistic and linear regression (glmnet: Friedman et al., 2010), support vector ma-
chines with a radial basis kernel (kernlab: Karatzoglou et al., 2004), decision trees (rpart:
Therneau et al., 2019), random forest (randomForest: Liaw & Wiener, 2002), and gradient-
boosted trees (xgboost: Chen et al., 2020). run_ml() randomly splits the data into train
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and test sets while maintaining the distribution of the outcomes found in the full dataset.
It also provides the option to split the data into train and test sets based on categorical
variables (e.g. batch, geographic location, etc.). mikropml uses the caret package (Kuhn,
2008) to train and evaluate the models, and optionally quantifies feature importance. The
output includes the best model built based on tuning hyperparameters in an internal and
repeated cross-validation step, model evaluation metrics, and optional feature importances.
Feature importances are calculated using a permutation test, which breaks the relationship
between the feature and the true outcome in the test data, and measures the change in model
performance. This provides an intuitive metric of how individual features influence model
performance and is comparable across model types, which is particularly useful for model
interpretation (Topçuoğlu et al., 2020). Our introductory vignette contains a comprehensive
tutorial on how to use run_ml().

Figure 1: mikropml pipeline

Ideal workflow for running mikropml with many different train/test splits

To investigate the variation in model performance depending on the train and test set used
(Lapp et al., 2020; Topçuoğlu et al., 2020), we provide examples of how to run_ml() many
times with different train/test splits and how to get summary information about model per-
formance on a local computer or on a high-performance computing cluster using a Snakemake
workflow.

Tuning & visualization

One particularly important aspect of ML is hyperparameter tuning. We provide a reasonable
range of default hyperparameters for each model type. However practitioners should explore
whether that range is appropriate for their data, or if they should customize the hyperparameter
range. Therefore, we provide a function plot_hp_performance() to plot the cross-validation
performance metric of a single model or models built using different train/test splits. This
helps evaluate if the hyperparameter range is being searched exhaustively and allows the user
to pick the ideal set. We also provide summary plots of test performance metrics for the
many train/test splits with different models using plot_model_performance(). Examples
are described in the accompanying vignette on hyperparameter tuning.
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Dependencies

mikropml is written in R (R Core Team, 2020) and depends on several packages: dplyr
(Wickham et al., 2020), rlang (Henry et al., 2020) and caret (Kuhn, 2008). The ML
algorithms supported by mikropml require: glmnet (Friedman et al., 2010), e1071 (Meyer
et al., 2020), and MLmetrics (Yan, 2016) for logistic regression, rpart2 (Therneau et al.,
2019) for decision trees, randomForest (Liaw & Wiener, 2002) for random forest, xgboost
(Chen et al., 2020) for xgboost, and kernlab (Karatzoglou et al., 2004) for support vector
machines. We also allow for parallelization of cross-validation and other steps using the
foreach, doFuture, future.apply, and future packages (Bengtsson & Team, 2020).
Finally, we use ggplot2 for plotting (Wickham, 2016).
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