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In contrast to the commentary of Wang et al. (2011), I
contend that the inclusion of secondary structure
information provides a faster and more robust
analysis when assigning sequences to operational
taxonomic units (OTUs). The authors ignored the
long history of molecular phylogenetics, where
multiple sequence alignments are preferred to
pairwise sequence alignments because multiple
sequence alignments preserve positional homology
across all sequences, not just pairs of sequences
(Durbin et al., 1998). Furthermore, profile-based
alignments that incorporate the secondary structure
of the 16S rRNA molecule are preferred because
they provide additional biological information that
strengthens the confidence that positional homology
is being conserved (Keller et al., 2010). The degree to
which these theoretical points are important is
contested. I contend that profile-based alignments
using curated secondary structure models combined
with hierarchical clustering algorithms should be
the standard method of assigning 16S rRNA gene
sequences to OTUs. I will justify my position by re-
emphasizing my previous work, which the Wang
commentary ignored, and illustrate several incorrect
conclusions that they reached in supporting their
thesis (Schloss 2009, 2010, 2011; Schloss and
Westcott, 2011).

The Turnbaugh data set that was used in the Wang
commentary was not curated using now state-of-the-
art methods including denoising, quality trimming or
chimera checking (Turnbaugh et al., 2009). Instead, I
have chosen data from two regions of the 16S rRNA
gene (that is, V13 and V35), which were amplified
and sequenced from a DNA extraction obtained from
a single stool sample as part of the Human Micro-
biome Project (Project SRP002397 in the NCBI Short
Read Archive). These data were denoised using
PyroNoise (Quince et al., 2011) and screened for
chimeras using UChime (Edgar et al., 2011) and
presented in a previous study (Schloss et al., 2011). In
total, there were 779 398 and 560 962 sequences in the
V13 and V35 data sets, respectively, after denoising
and chimera curation. Once duplicate sequences were
removed from the data sets, there were 12 877 and
11 270 unique sequences in the V13 and V35 data
sets, respectively.

An additional limitation of the Wang commentary
was their selection of alignment algorithms. They
compared results from alignments generated using
the Needleman–Wunsch, Infernal (inference of RNA
alignment) and PARTS (probabilistic alignment for
RNA joint secondary structure prediction) algo-
rithms. The choice of PARTS is problematic because
it has not been used in the microbial ecology
literature and the absence of a NAST (Nearest
Alignment Space Termination)-based alignment
using either the SILVA or greengenes reference sets
is conspicuous as it is a standard method of aligning
16S rRNA sequences (DeSantis et al., 2006b;
Schloss, 2009; Caporaso et al., 2010). Finally, they
indicate that they used ESPRIT-Tree to carry out
their Needleman–Wunsch alignments; however, the
ESPRIT-Tree documentation indicates that align-
ments are carried out using the Gotoh algorithm,
which uses an affine gap penalty (http://plaza.ufl.
edu/sunyijun/Paper/ESTree_User.pdf). Here, I will
utilize the Needleman–Wunsch algorithm (gap
opening penalty¼ 2), Gotoh algorithm (gap opening
penalty¼ 10, gap extension penalty¼ 0.5; these are
same as described in the ESPRIT-Tree documenta-
tion) to carry out pairwise alignments (Gotoh, 1982;
Needleman and Wunsch, 1970). In addition, I used
the mothur-implemented version of the NAST
algorithm using greengenes and SILVA reference
alignments (DeSantis et al., 2006a; Pruesse et al.,
2007; Schloss, 2009) and Infernal as described on
the Ribosomal.Database Project website (http://
rdp.cme.msu.edu/download/RDPinfernalTraindata.
zip) (Cole et al., 2009; Nawrocki et al., 2009).

A significant problem with the pairwise align-
ment approach is determining how to treat DNA
sequences that do not overlap the same region of the
gene. This is particularly problematic because PCR
primers can amplify spurious templates. For exam-
ple, I observed 11 V13 and 1 V35 sequences that did
not start immediately downstream of the expected
priming site. Although they are a relatively small
number of sequences, pairwise alignments would
not have detected these PCR artifacts, and so they
would not be removed from the data sets. To
simplify subsequent analyses, I removed these
sequences for all comparisons. Obtaining fully
overlapping sequences can also be complicated
because the number of high-quality bases generated
per sequence is rarely uniform. For example, the
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sequence lengths in the Turnbaugh data set used in
the Wang commentary varied in length between 200
and 317 bp (mean¼ 232; s.d.¼ 13). Even when
trimming all flowgrams to 450 flows, as has been
suggested prior to using PyroNoise (Schloss et al.,
2011), I observed reads that varied in length between
250 and 300 bp for the V13 and V35 data sets after
removing barcodes and primers. Although all of the
sequences within these data sets start at the same
alignment position, they vary in where they end.
Thus, one is left to determine how to treat sequences
of varying length that are identical over the over-
lapping region. Because the 16S rRNA gene does not
evolve uniformly over its length, it is necessary to
trim the sequences so that every sequence overlaps
the same alignment positions. In this approach,
every sequence and base is treated equally. This
cannot be done when using pairwise alignments
because the variable number of insertions and
deletions along different phylogenetic branches
makes a purely length-based trimming impossible.

To evaluate the pairwise distances that are
calculated with and without trimming sequences
to the same alignment coordinates, I created a V13
data set that was trimmed to include Escherichia.
coli positions 300–516 and a V35 data set that
included positions 659–906. These positions were
selected to balance the tradeoff between the number
of sequences and their length, and resulted in
median lengths of 245 and 262 bp, respectively. By
determining the regression of distances calculated
between non-trimmed sequence alignments as a
function of the distances calculated using trimmed
sequences aligned using the NAST algorithm with a
SILVA-based reference alignment, I could measure
the percent increase of the untrimmed alignments
relative to the trimmed alignment. The SILVA-based
alignment was selected as the reference based on
previous observations that it does a better job of
preserving Watson–Crick base pairing in variable
regions compared to the Ribosomal.Database Project
and greengenes reference alignments (Schloss,
2009). Distances calculated using untrimmed
sequences aligned by the Needleman–Wunsch,
Gotoh and NAST-SILVA algorithms were 11%–20%
larger than those calculated using sequences aligned
using NAST-SILVA algorithm that were trimmed to a
common region in the alignment (Table 1). I also
observed that when sequences were trimmed to a
common alignment region and then realigned, the
distances calculated using Needleman and Gotoh
alignments were similar to those using NAST-SILVA
and that those calculated using Infernal-Ribosomal.
Database Project and NAST-greengenes were larger
than the NAST-SILVA distances (Table 1). These are
similar to my previous results (Schloss, 2010). These
results are illustrative of the variation that can be
observed with and without trimming sequences to a
common set of alignment positions. As it is not
possible to trim sequences to the same alignment
positions in a pairwise alignment-based analysis,

the remainder of my analysis will use distances
calculated with untrimmed sequences for the Needle-
man and Gotoh alignments and trimmed sequences
for the Infernal and NAST-based alignments.

As the Wang commentary correctly describes, it is
difficult to assess OTU assignment accuracy. They
chose to use an approach that utilizes sequence
alignments and taxonomic information to map
sequences to the references species. This is proble-
matic as it is widely known that taxonomic levels do
not correlate well with individual distance thresh-
olds based on 16S rRNA gene sequences (Schloss
and Westcott, 2011). I previously implemented a
database-independent method of measuring the
quality of sequence assignment to OTUs at a 3%
distance threshold (Schloss and Westcott, 2011). In
this approach the OTU assignments generated using
the trimmed NAST-SILVA alignments were assumed
to represent the truth because of the reasons I have
outlined thus far in my commentary. I then
identified pairs of sequences that had distances less
than 3% and co-occurred in the same OTU (that is,
true positives) or were found in different OTUs (that
is, false negatives). For those pairs of sequences with
distances greater than 3%, some were found in
separate OTUs (that is, true negatives) and others co-
occurred in the same OTU (that is, false negatives).
As it is impossible to have false positives or false
negatives, I used the Matthew’s correlation coeffi-
cient (MCC) to synthesize these four parameters
(Baldi et al., 2000). As shown in Table 2, the NAST
and Infernal algorithms performed better than the
pairwise alignment algorithms as judged by the
MCC. An alternative approach is USearch, which is
a fast alignment-independent heuristic (Edgar,
2010). When I used USearch to assign sequences
to OTUs as described in the user manual

Table 1 Comparison of distances calculated using various
alignment algorithms when used with sequences that are trimmed
or left untrimmed relative to distances calculated using sequences
aligned using the NAST algorithm with the SILVA reference
alignment and trimmed to common alignment coordinates

Region Alignment
method

Trimmed to
alignment region

Slope R2

V13 Needleman No 1.11 0.95
Gotoh No 1.16 0.90
NAST-SILVA No 1.13 0.95
NAST-greengenes Yes 1.10 0.93
Infernal-RDP Yes 1.05 0.92
Needleman Yes 0.99 0.99
Gotoh Yes 1.01 0.98

V35 Needleman No 1.17 0.95
Gotoh No 1.18 0.94
NAST-SILVA No 1.20 0.96
NAST-greengenes Yes 1.34 0.95
Infernal-RDP Yes 1.01 0.97
Needleman Yes 0.99 0.99
Gotoh Yes 1.01 0.98

Abbreviations: Infernal, inference of RNA alignment; NAST, Nearest
Alignment Space Termination; RDP, Ribosomal.Database Project.
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(http://drive5.com/usearch/UsearchUserGuide5.1.pdf),
its MCC was substantially lower than the other
methods and had a substantially higher false-
negative rate. Comparing the NAST-SILVA to
Needleman–Wunsch OTU assignments, the NAST-
SILVA assignments had more true positives (V13:
1.09-fold, V35: 1.10-fold), comparable true nega-
tives, more false positives (V13: 1.12-fold, V35: 1.64-
fold), and fewer false negatives (V13: 351-fold, V35:
1260-fold). For both the V13 and V35 regions, this
translated into observing 32% more OTUs in the
Needleman–Wunsch. These results contrast with
those of the Wang commentary, which indicated that
alignments that incorporated secondary structure
information generated lower-quality OTUs relative
to those from pairwise alignments.

The Wang commentary also commented that
pairwise alignment algorithms were significantly
faster than methods that incorporate the secondary
structure of the 16S rRNA molecule. Although this
is true for PARTS, it is not true for the Infernal or
NAST algorithms. Making all pairwise alignments
and calculating their pairwise distances requires an
amount of time proportional to N2L2, where N is the
number of sequences and L is their length. In
contrast, the time requirements for generating align-
ments using Infernal or NAST are proportional to
NL2. The profile-based alignments that incorporate
the gene’s secondary structure were more than 45-
fold faster than either of the pairwise alignment
methods (Table 3). Even if pairwise alignments
generated OTU assignments that were as good as
those that incorporate the secondary structure, it is
clear that they are prohibitively slower.

Finally, the Wang commentary states that ‘A first
and crucial stepy is the binning of 16S sequences’.
In fact, the first step should involve sequence
trimming, denoising and chimera removal. I have

found that a significant component to the perceived
difficulty in assigning sequences to OTUs is the
increased sequencing error rates at the distal end of
sequence reads (Schloss et al., 2011). One might
assume that since a sequencing platform provides
317 base calls for a sequence that all 317 of those
base calls are equally good. In fact, the distal end of
every sequence has diminished quality. The end
result is that these sequencing errors create a
scenario where there are an artificially inflated
number of unique sequences. This then increases
the amount of time required to perform alignments,
distance calculations and OTU assignments. Once
sequences are trimmed, denoised and evaluated for
chimeras, the number of unique sequences and
spurious OTUs are dramatically decreased (Schloss
et al., 2011).

It should be noted that the various algorithms will
perform differently when used with different data
sets, and different regions will perform differently
than the human stool sample described here. There-
fore, on the theoretical grounds of preserving
positional homology, it does not make sense to

Table 2 Quality of OTU assignments for various alignment methods using data collected from the V13 and V35 regions of the 16S rRNA
gene when using the average neighbor clustering algorithm to assign sequences at a distance threshold of 0.03

Region Alignment
algorithm

True
positives

True
negatives

False
positives

False
negatives

Matthew’s
correlation
coefficient

Number of
OTUs

V13 NAST-SILVA 11 788 844 69 880 006 717 908 373 787 0.948 248
NAST-greengenes 10 903 337 70 035 748 562 166 1 259 294 0.911 279
Needleman-
Wunsch

10 852 102 70 063 205 534 709 1 310 529 0.909 328

Infernal-RDP 10 781 897 69 956 380 641 534 1 380 734 0.901 287
Gotoh 10 556 961 70 140 027 457 887 1 605 670 0.898 469
USearch 4 792 232 70 348 100 249 814 7 370 399 0.664 287

V35 NAST-SILVA 12 262 540 49 374 768 1 752 017 100 221 0.914 202
NAST-greengenes 11 845 329 49 773 304 1 353 481 517 432 0.909 240
Infernal-RDP 12 097 732 49 373 547 1 753 238 265 029 0.905 217
Needleman–
Wunsch

11 097 695 50 056 419 1 070 366 1 265 066 0.882 267

Gotoh 10 985 871 50 134 673 992 112 1 376 890 0.880 345
USearch 7 994 796 49 990 967 165 908 5 337 875 0.726 255

Abbreviations: Infernal, inference of RNA alignment; NAST, Nearest Alignment Space Termination; RDP, Ribosomal.Database Project. The
algorithms are sorted in descending order by their Matthew’s correlation coefficients. There were 12 866 and 11 269 V13 and V35 sequences,
respectively.

Table 3 Number of minutes required to align sequences and
calculate distances between sequences using various algorithms

Alignment algorithm V13 V35

NAST-greengenes 17.4 10.3
NAST-SILVA 19.2 15.7
Infernal-RDP 27.6 24.4
Needleman–Wunsch 1321.1 1081.5
Gotoh 1516.1 1221.2

Abbreviations: Infernal, inference of RNA alignment; NAST, Nearest
Alignment Space Termination; RDP, Ribosomal.Database Project. All
times are based on using a single processor although all algorithms
can be parallelized. The alignment algorithms are sorted according to
the number of minutes required.
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preferentially choose one of the alternative align-
ment algorithms instead. Yet even if the outputs of
these various algorithms were the same, the profile-
based algorithms that incorporate the secondary
structure of the 16S rRNA gene are significantly
faster than those that do not.
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