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In spite of technical advances that have provided increases in orders of magnitude in sequencing coverage,
microbial ecologists still grapple with how to interpret the genetic diversity represented by the 16S rRNA gene.
Two widely used approaches put sequences into bins based on either their similarity to reference sequences
(i.e., phylotyping) or their similarity to other sequences in the community (i.e., operational taxonomic units
[OTUs]). In the present study, we investigate three issues related to the interpretation and implementation of
OTU-based methods. First, we confirm the conventional wisdom that it is impossible to create an accurate
distance-based threshold for defining taxonomic levels and instead advocate for a consensus-based method of
classifying OTUs. Second, using a taxonomic-independent approach, we show that the average neighbor
clustering algorithm produces more robust OTUs than other hierarchical and heuristic clustering algorithms.
Third, we demonstrate several steps to reduce the computational burden of forming OTUs without sacrificing
the robustness of the OTU assignment. Finally, by blending these solutions, we propose a new heuristic that
has a minimal effect on the robustness of OTUs and significantly reduces the necessary time and memory
requirements. The ability to quickly and accurately assign sequences to OTUs and then obtain taxonomic
information for those OTUs will greatly improve OTU-based analyses and overcome many of the challenges
encountered with phylotype-based methods.

The application of ecological theory developed for macro-
scopic organisms to microorganisms is challenged by difficul-
ties in defining the appropriate levels of spatial, temporal, and
taxonomic scales. Ascertaining an appropriate taxonomic scale
is particularly troubling because of the inability to systemati-
cally define various taxonomic levels across the Bacteria when
relatively few bacterial taxa have ever been cultured. Often,
taxonomic outlines reflect biases within the field and battles
between taxonomic “lumpers” and “splitters” (3, 25). Consid-
ering the now widespread use of next-generation sequencing
technology that allows investigators to interrogate bacterial
populations previously inaccessible due to their rarity, the chal-
lenge of placing 16S rRNA gene sequences from uncultured
bacteria into a bacterial taxonomy is even more acute. Two
general approaches have been widely pursued for binning se-
quences into microbial populations. The first method relies
upon reference taxonomic outlines to classify sequences to
taxonomic bins (i.e., phylotypes) (10, 16, 24). The second
method allows the data to “speak for themselves” by assigning
sequences to operational taxonomic units (OTUs) based on
the similarity of sequences within a data set to each other (20,
21, 23).

Many microbiologists prefer phylotype-based methods be-
cause they enable an investigator to place a label onto a se-
quence indicating its relationship to previously cultured and
characterized microbes. Although an appealing approach,

there are myriad examples of organisms that belong to the
same species that have different phenotypes and organisms
with the same phenotype belonging to different taxonomic
lineages. For example, the assignment of a 16S rRNA gene
sequence to the genus Pseudomonas could indicate the pres-
ence of either a beneficial or pathogenic bacterium in a sample.
Furthermore, because most taxonomy outlines are based on
what is known of already cultured organisms, members of
candidate phyla (e.g., TM7) or difficult-to-culture phyla (e.g.,
Acidobacteria) lack a well-defined taxonomy that extends to the
genus or species level. Finally, building upon the inability to
develop a coherent definition for a bacterial species, it is im-
possible to consistently define bacterial genera, families, or-
ders, classes, or phyla. The result being that there are at least
three widely used curated taxonomy outlines that contain sig-
nificant conflicts with each other (4). Despite these limitations,
phylotype-based methods are computationally efficient, lend
themselves well to parallelization, and provide a stable classi-
fication. Numerous studies have shown that diverse ap-
proaches to classification are robust (10, 16, 24). Although one
may debate the merits of what the classification means, there is
little debate over the quality of the classifications.

OTU-based methods overcome a number of limitations as-
sociated with phylotypes. Namely, because a taxonomy outline
is not used, one is not restricted to the bins described by the
outline. Thus, it becomes possible to assign all sequences to
bins on the same basis, regardless of whether the sequence is
represented by references within a taxonomy outline or
whether there is conflict in how different outlines classify the
most similar reference sequences. Because the methods used
are cluster based and not classification based, whether two
sequences are found in the same OTU depends on the other
sequences in the data set. OTU-based methods also assume
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that bacterial 16S rRNA genes evolve at the same rate regard-
less of their taxonomic affiliation, whereas taxonomists would
debate differential rates of evolution to split or lump a taxon-
omy, OTU-based methods remain agnostic and do not take
such considerations into account (14). This can be seen either
as a strength or a weakness, depending on one’s perspective.
Interpretation of OTUs is complicated by the lack of a consis-
tent method for converting between the thresholds used to
define OTUs and taxonomic levels. For example, the opera-
tional definition of a species, 3% dissimilarity, is often cited but
controversial (6, 8, 11, 22). Perhaps the most significant limi-
tation to using OTU-based methods is that the clustering al-
gorithms are computationally intensive, relatively slow, and
can require significant amounts of memory (20, 21, 23).

A more general problem faced by OTU-based methods is
the choice of what method to use to cluster sequences into
OTUs. The nearest (i.e., single-linkage), furthest (i.e., com-
plete linkage), weighted neighbor, and average neighbor (i.e.,
unweighted-pair group method using average linkages
[UPGMA]) hierarchical clustering algorithms are commonly
used in various disciplines to assign individuals to bins (14).
Within the field of microbial ecology, the furthest neighbor
algortihm was originally suggested because it gave the most
conservative estimate of how much additional sampling was
required to complete a census of a community (20). Others
have recently noticed that the furthest neighbor algorithm is
sensitive to sequencing artifacts and suggested using the aver-
age neighbor algortihm based on empirical observations from
sequencing a collection of reference 16S rRNA gene fragments
(9). Improvements have been made to these algorithms that
focus on reducing the memory and processing time require-
ments. Most notable among these is the use of sparse matrices
that only represent the unique sequences in a data set as input
(21) and an online algorithm that requires a small memory
footprint (23). Due to the computationally intensive nature of
these approaches, others have developed and employed heuris-
tics to assign 16S rRNA gene sequences to OTUs (5, 15, 23).
Unfortunately, none of these clustering methods have been vetted
by assessing the quality of the sequence assignments using 16S
rRNA gene sequences, and so researchers select an approach
based on speed, ease of use, and personal experience.

This study explores and proposes solutions to current chal-
lenges experienced in applying OTU-based methods. First, we
explore whether it is feasible to derive distance-based cutoffs
that would permit one to translate between OTU- and phylo-
type-based analyses. Supporting the conventional wisdom, we
assert that it is not possible to define distance-based delinea-
tions for different taxonomic levels and instead propose a
method for labeling an OTU with a taxonomic label. Second,
faced with the challenge of determining the most robust
method of assigning sequences to OTUs, we apply a taxonomy-
independent metric to demonstrate that the average neighbor
clustering algorithm outperforms other deterministic and heu-
ristic approaches. Third, after implementing numerous algo-
rithmic modifications to improve the speed and memory re-
quirements of these clustering algorithms without sacrificing
accuracy, we describe a novel heuristic that overcomes these
issues with minimal effect on clustering accuracy. Throughout
this study, we sought to blend the independent and interacting

contributions of OTU- and phylotype-based methods to im-
prove the analysis of 16S rRNA gene sequences.

MATERIALS AND METHODS

Data set. We analyzed a collection of 14,956 unique, full-length, high-quality,
well-aligned 16S rRNA gene sequences (18). To analyze regions that are trac-
table using the popular 454 FLX Titanium sequencing technology, we extracted
the V13 and V35 regions from the full-length sequences based on their alignment
coordinates. For V13 sequences, Escherichia coli positions 28 through 514 were
considered, and for the V35 sequences, positions 357 and 906 were considered.
These positions were based on the sites where commonly used PCR primers
anneal (13). Full-length sequences spanned E. coli positions 28 through 1491.
There were 13,217 unique V13 sequences and 12,387 unique V35 sequences.
Ribosomal Database Project (RDP) classifications were determined by classify-
ing sequences with the Bayesian classifier.

Bayesian classifier. We implemented the naïve Bayesian classifier proposed by
Wang and colleagues (24). Whereas the original implementation was written in
the Java programming language, our version was written in C��. Our imple-
mentation allows users to classify their sequences by using any reference data-
base and taxonomy. Furthermore, the version available within mothur can utilize
multiple processors for parallel processing. Classification of test sequences by
using the RDP training set yielded similar results to those provided by using the
original Java version. We used the RDP-supplied training set, which was released
on 20 March 2010 (http://sourceforge.net/projects/rdp-classifier/). The RDP clas-
sification scheme provides a traditional Linnaean hierarchy that is more easily
standardized than the greengenes (4)- or SILVA (17)-based taxonomies; there-
fore, we decided to use the RDP-based outline for the remainder of our analysis.
The RDP training set contains 8,127 bacterial sequences distributed among 35
phyla, 72 classes, 107 orders, 288 families, and 1,585 genera. Following the
suggestions described by the RDP (http://rdp.cme.msu.edu), we used the last
taxonomic level for a sequence that had a pseudo-bootstrap value of at least
80%. We used 1,000 pseudo-bootstrap replications, which would result in a
standard error of 1.3% for pseudo-bootstrap values of 80.0%.

Hierarchical clustering. We tested several permutations of the traditional
hierarchical clustering approach, which used pairwise distance matrices as input.
Distance matrices were calculated by assuming that consecutive insertions or
deletions represented one mutation event (18). We calculated OTUs for distance
thresholds ranging between 0.00 and 0.10 with increments of 0.01; all distance
thresholds represented a hard cutoff with no rounding. We evaluated four hier-
archical clustering algorithms (14). The furthest neighbor algorithm (i.e., com-
plete linkage) requires that the distance between every sequence within an OTU
be within the specified threshold. The nearest neighbor algorithm (i.e., single
linkage) requires that all sequences within the specified threshold of any other
sequence belong to the same OTU. The weighted neighbor algorithm (i.e.,
weighted arithmetic average clustering) gives equal weights to the distances
between OTUs when they are joined to form a new OTU. In contrast, the
average neighbor algorithm (i.e., unweighted arithmetic average clustering)
weighs the OTUs to be joined by the number of sequences within each OTU. For
each algorithm, ties between equal distances were broken by randomly selecting
a distance to use for the next clustering step.

The four clustering algorithms were implemented as part of four general
clustering approaches. First, we used a traditional approach that processes a
PHYLIP-formatted distance matrix using an approach previously used in
DOTUR (20). Second, we used an approach that makes use of a sparse matrix
format that has previously been described (21). Third, we implemented an
“on-the-fly” approach that is used in ESPRIT (23). We expanded this approach
from the original method described for the furthest neighbor algorithm to utilize
all four clustering algorithms. Finally, we developed a method that splits a
distance matrix into nonoverlapping submatrices, which could then be processed
in series or parallel. As none of these methods employ heuristics, we confirmed
that the same clustering algorithm (e.g., average neighbor) gave the same output
regardless of the approach (i.e., traditional, sparse, on-the-fly, or matrix split).

Heuristics. We implemented four nonhierarchical clustering algorithms that
utilize heuristics and have previously been used to assign 16S rRNA gene se-
quences to OTUs. First, we assigned sequences to OTUs using CD-HIT-EST
version 4.3 with the default settings (15). Second, we assigned sequences to
OTUs using BlastClust version 2.2.16 and the default settings, with the exception
that we forced the program to utilize 8 processors (http://www.ncbi.nlm.nih.gov
/IEB/ToolBox/C_DOC/lxr/source/doc/blast/blastclust.html). Third, we assigned
sequences to OTUs using the 32-bit release of UClust 3.0.617 (5). We evaluated
UClust’s default settings as well as the predefined exact and optimal settings and
found that the exact and optimal settings generated similar OTUs that were
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more robust than the default settings. Because the optimal setting was the fastest,
we utilized that setting for this study. Finally, we assigned sequences to OTUs
using the LINUX version of ESPRIT that was updated on 20 July 2009 (23).
ESPRIT’s default settings were used, with the exception that we used a kmer
distance threshold of 0.40 and did not perform the ESPRIT sequence prepro-
cessing steps. In addition to the modifications we made to the default parameters
for each of these programs, we adjusted the clustering threshold to generate
OTU assignments for distance thresholds between 0.00 and 0.10 incremented by
0.01.

Assessment of clustering quality. To overcome the challenge of assessing
clustering quality by using an objective standard, we implemented methods used
in machine learning control theory. For a set of sequences assigned to OTUs at
a specific distance threshold clustered by one of the clustering algorithms, we
counted the number of sequence pairs that could be considered true positives
(TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs). A
pair of sequences was considered a true positive (TP) if the distance between the
sequences was smaller than the distance threshold and they belonged to the same
OTU; a false positive (FP) was a pair of sequences that belonged to the same
OTU but had a pairwise distance larger than the threshold. A pair of sequences
was considered as a true negative (TN) if their pairwise distance was larger than
the threshold and they did not belong to the same OTU; a false negative (FN)
was a pair of sequences that belonged to different OTUs, but had a pairwise
distance smaller than the threshold. There are numerous methods to weigh these
four values. To evenly balance the terms, we utilized the Matthew’s correlation
coefficient (MCC):

MCC �
TP � TN � FP � FN

�(TP � FP)(TP � FN)(TN � FP)(TN � FN)

The MCC coefficient can vary between �1 and �1 and represents the correlation
between the observed and predicted values of the clustering scheme (2).

Computation. All analyses were performed using mothur v.1.14 and custom
Perl scripts on a cluster of compute nodes, where each node contained dual quad
core 2.26-GHz Intel Nehalem central processing units (CPUs) with access to 48
GB of random-access memory (RAM). The reported times for analyses repre-
sent the minimum “wall time” for three executions of the same setting and
should only be interpreted for assessment of relative performance.

RESULTS

What are appropriate distance thresholds for an OTU-
based analysis? We found that the genetic distance between
the most disparate full-length 16S rRNA gene sequences
within a named taxonomic group represented a continuum for
each level in the hierarchy (Fig. 1). Furthermore, the distances
within a taxonomic group are not evenly distributed within the
group. Genera such as Bacillus (n � 360 sequences, maximum
distance [max] � 0.14, mean distance � 0.07, standard devia-
tion of distances [SD]� 0.02), Bacteroides (n � 50, max � 0.17,
mean � 0.09, SD � 0.03), Clostridium (n � 99, max � 0.15,
mean � 0.08, SD � 0.02), and Pseudomonas (n � 514, max �
0.10, mean � 0.04, SD � 0.02) were very broad. In contrast,
genera such as Bradyrhizobium (n � 76, max � 0.06, mean �
0.02, SD � 0.01), Cetobacterium (n � 86, max � 0.02, mean �
0.01, SD � 0.003), Pseudoalteromonas (n � 101, max � 0.07,
mean � 0.02, SD � 0.01), and Staphylococcus (n � 43, max �
0.05, mean � 0.03, SD � 0.01) were much tighter. The 663
genera in which the maximum intragenus distance was greater
than 0.094 represented more than 50% of the sequences. Fig-
ure 1A also indicates that there is considerable overlap in the
maximum intrataxon distances between taxonomic levels. For
example, there are groups at every level in the taxonomic
outline where the maximum intragroup distance is less than
0.15. Similarly, we observed that the variation in phylogenetic
diversity represented at each taxonomic level also represented
a continuum (Fig. 1B). When applied to the V13 and V35
regions, we observed the same general trends that were ob-
served for the full-length sequences (see Fig. S1 and S2 in the
supplemental material). As would be expected based on earlier

FIG. 1. Cumulative fraction of taxa that had a specified maximum intrataxon distance (A) and total branch length (B) for each taxonomic level
when full-length 16S rRNA gene sequences were analyzed. At each taxonomic level, sequences that did not affiliate with a known lineage (i.e.,
incertae sedis) were excluded. The numbers in parentheses next to the name of each taxonomic level indicate the number of taxa within that level
that we observed. (See Fig. S1 and S2 in the supplemental material for the same analysis using the V13 and V35 sequences, respectively.)
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work (18), the intrataxon distances obtained with V13 se-
quences were generally larger and the intrataxon distances
obtained with the V35 sequences were generally smaller than
those calculated with the full-length sequences (see Fig. S1 and
S2 in the supplemental material). Based on these results, it was
clearly impossible to select single thresholds to operationally
define a grouping and give it a position in a Linnaean taxon-
omy. Alternatively stated, there is no consistent relationship
between the phenotypically derived bacterial taxonomy and
genetic diversity for full-length 16S rRNA gene sequences.

A method for assigning a taxonomic label to an OTU. Be-
cause of the difficulty in relating distance-based thresholds to
taxonomic levels, we tested two methods for classifying OTUs.
One algorithm for applying a taxonomic label to an OTU
involves identifying a sequence within an OTU that has the
smallest distance from all of the other sequences in the OTU
and then classifying that sequence. Such a sequence is called a
representative sequence for the OTU. Yet, if an OTU repre-
sents sequences from multiple taxa, classification of a repre-
sentative sequence could result in a false taxonomic labeling of
the OTU. An alternative algorithm, which we propose here, is
to classify every sequence in an OTU and then to identify the
majority consensus taxonomy of the sequences within the
OTU. This consensus-based algorithm can be modified by in-
creasing the level of consensus required to assign a taxonomic
label to an OTU. To evaluate the merits of each approach, we
applied the two algorithms to OTUs identified for the full-
length, V13, and V35 sequences using the average neighbor
algorithm. We found that as the OTU cutoff increases, the
fraction of differently classified OTUs increased (Fig. 2). Had
a stricter consensus definition been applied, the discrepancy
between the two algorithms would have been greater.

As described above, each taxonomic level contains consid-

erable range in the maximum intrataxonomic group genetic
diversity (Fig. 1). For example, the maximum intragenus ge-
netic distance for most genera is less than 0.15. This would
suggest that using OTU thresholds below 0.15 would yield
multiple OTUs that could be assigned to the same genus. We
found that for full-length sequences, there were 4.4 OTUs per
genus at the 0.03 distance threshold, 3.5 at the 0.05 threshold,
and 2.7 at the 0.10 threshold. Similarly for V13 sequences,
there were averages of 5.1, 4.1, and 3.1 OTUs per genus at the
0.03, 0.05, and 0.10 thresholds. Averages of 4.0, 3.2, and 2.7
OTUs per genus were observed at the same thresholds for V35
sequences. Although these do not represent species, strictly
speaking, OTUs defined at these thresholds do provide a more
refined definition of subgenus populations.

Because there were no clear thresholds to define taxonomic
levels, we also expected some OTUs to represent sequences
from multiple lineages. When assigning full-length sequences
to OTUs using the average neighbor algorithm, there were
3,566 OTUs defined at the 0.03 threshold with only one se-
quence (i.e., singletons) and 1,906 nonsingleton OTUs. Among
the nonsingleton OTUs, there were 140 OTUs whose se-
quences’ taxonomies did not all agree. Within this set of dis-
cordant OTUs, 24 OTUs had sequences that classified to the
same taxonomic depth, 98 had sequences that varied in their
taxonomic depth by one level, 12 had sequences that varied by
two levels, 4 had sequences that varied by three levels, and one
each had sequences that varied by four or five levels. Similar
percentages of OTUs with these levels of variation in taxo-
nomic depth were also observed for the V13 and V35 se-
quences. The high concordance of taxonomies represented
within OTUs confirms the assertion that OTUs can provide a
more refined analysis than is possible by the phylotype-based
approach.

What is the best method to assign sequences to OTUs? One
significant challenge in assigning sequences to OTUs is iden-
tifying an algorithm that balances the inclusion of sequences
into an OTU that are within a specified genetic distance while
excluding those that are greater than that distance. To assess
the quality of the clusters, we utilized the Matthew’s correla-
tion coefficient. Among the four classic hierarchical clustering
algorithms we tested, the average neighbor algorithm (i.e.,
UPGMA) was considerably better than the weighted, nearest,
and furthest neighbor algorithms, regardless of the region and
distance threshold that we tested (Fig. 3; see Fig. S3 and S4 in
the supplemental material). The nearest and furthest neighbor
algorithms produced OTUs that yielded similar MCC values;
however, their clustering was worse than was observed for the
weighted neighbor OTUs. The average neighbor algorithm
also performed better than four published heuristics (i.e., CD-
HIT, UClust, ESPRIT, and BlastClust) that have been used to
cluster 16S rRNA gene sequences into OTUs. In general, the
MCC values for CD-HIT and UClust were comparable to each
other, followed by ESPRIT and BlastClust. The outputs from
CD-HIT and UClust were comparable to that observed with
the weighted neighbor algorithm, while ESPRIT and Blast-
Clust were comparable to that observed with the furthest and
nearest neighbor algorithms. Next, we used the average neigh-
bor algorithm to assign V13 and V35 sequences to OTUs and
calculated the MCC values based on the pairwise distances
calculated with the full-length sequences. For the V13 se-

FIG. 2. Fraction of OTUs calculated for a 0.03-cutoff level that
were represented by more than one sequence and had different clas-
sifications when we classified the OTU using a representative sequence
from the OTU or by determining the majority consensus taxonomy for
the full-length, V13, and V35 16S rRNA gene sequence data sets.
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quences, the MCC values were 0.67, 0.70, and 0.70 for distance
thresholds of 0.03, 0.05, and 0.10. For the V35 sequences, the
MCC values were 0.65, 0.81, and 0.71. These results are
aligned with a previous analysis that showed a generally poor
correlation between the pairwise distance calculated by using
full-length and V13 and V35 sequences (18).

Improving OTU assignment algorithms without heuristics.
We utilized several observations to accelerate the speed of the
clustering process and to reduce the RAM requirements for
storing the distance matrix without changing the clustering
observed when using the traditional algorithm. First, we noted
that as sequencing coverage increases, so does the probability
that duplicate sequences will be observed. Therefore, it is pos-
sible to only assign unique sequences to OTUs and then map
onto them the identity of the duplicate sequences. Although
we initially screened our full-length sequences to only include
unique sequences, when we analyzed the V13 and V35 se-
quences we observed a considerable speedup (Table 1). Sec-
ond, we noted that researchers are typically only interested in
analyzing OTUs clustered below a specified distance threshold.
Considering distances above the threshold are not necessary to
calculate OTUs, the distance matrix can be represented in a
more efficient “sparse” format, effectively reducing the com-
putational complexity and memory requirements. Again, for all
regions, this observation resulted in an accelerated speedup in
the time required to assign sequences to OTUs (Table 1).
Third, we recognized that it is possible to split a sparse distance
matrix into sections that do not overlap with each other. Each
section of a sparse matrix could be clustered into OTUs sep-
arately and the results combined. The advantage of this ap-
proach is that the clustering could be done in parallel or series
with the benefits of reducing the effective number of sequences

(N) and speeding up the clustering rate, minimizing memory
usage, and potentially using the multiple processors found on
many computers to further accelerate the OTU assignment
step. Splitting a distance matrix yielded mixed results for speed
and showed little difference when using 1 or 8 processors. This
was because of the considerable time required to split the
matrix and merge the outputs of the separately clustered
OTUs and because the collection of submatrices still contained
large matrices that required lengthy processing times. Finally,
we borrowed an observation from Sun et al. (23) that se-
quences could be assigned to OTUs without reading in the

TABLE 1. Comparison of times required to cluster sequences into
OTUs for distance cutoffs ranging between 0.00 and 0.10 for various

clustering algorithms and input data formats when applied to
full-length, V13, and V35 16S rRNA gene sequencesa

Algorithm Approachb
Wall time (min) for sequence:

Full length V13 V35

Average neighbor Traditional 61.63 59.22 65.77
Unique 61.63 42.68 38.17
Sparse 27.25 8.12 30.58
Split-8 24.82 11.43 30.90
On-the-fly 6,085.97 2,848.80 6,035.52

Weighted neighbor Traditional 63.87 59.63 63.67
Unique 63.87 43.17 38.28
Sparse 20.30 7.75 24.28
Split-8 24.70 11.50 28.73
On-the-fly 7,597.98 3,396.17 7,852.87

Furthest neighbor Traditional 61.27 56.50 62.85
Unique 61.27 43.23 39.00
Sparse 0.53 0.15 0.25
Split-8 2.80 1.32 1.92
Online 3.28 1.33 2.57

Nearest neighbor Traditional 65.30 61.90 66.72
Unique 65.30 45.38 39.83
Sparse 0.53 0.15 0.25
Split-8 2.80 1.35 1.92
On-the-fly 3.25 1.28 2.50

CD-HIT UniqSeq 88.13 15.90 10.00

UClust UniqSeq 11.85 2.98 2.63

ESPRIT UniqSeq 6,361.85 228.45 390.70

BlastClust UniqSeq 919.52 165.67 187.47

Phylotype UniqSeq 46.38 10.38 12.08

a Although the V13 and V35 16S rRNA gene sequences are comparable in
length, the V35 16S rRNA gene sequences took longer to cluster because there
were more pairwise distances among sequences in that region that were smaller
than 0.10 than were found in the other data sets. All times represent the “wall
time” in minutes required for each analysis using the computer system described
in Materials and Methods.

b The “traditional” approach represented all 14,956 sequences according to a
PHYLIP-formatted lower-triangular distance matrix. The “unique” approach
only used the sequences that were identical to each other over their full length
according to a PHYLIP-formatted lower-triangular-distance matrix. The
“sparse” approach only used the sequences that were not identical to each other
over their full length according to a sparse matrix format. The “split-8” approach
split the sparse data format into mutually exclusive submatrices and clustered the
submatricies in parallel by using 8 processors. The “on-the-fly” data format used
the sparse data format but processed the distance matrix without reading the
entire matrix into memory. The “UniqSeq” approach represented the data by
only using unique, unaligned, FASTA-formatted sequences.

FIG. 3. Variation in the Matthew’s correlation coefficient calcu-
lated for OTUs identified by using eight classification algorithms at
genetic distances varying between 0.00 and 0.10 for full-length 16S
rRNA gene sequences. (See Fig. S3 and S4 in the supplemental ma-
terial for the same analysis using the V13 and V35 sequences,
respectively.)
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entire sparse distance matrix at once by using an “on-the-fly”
clustering algorithm. The resulting times were comparable for
the furthest and nearest neighbor algorithms and required a
negligible amount of RAM; however, the time required for the
weighted and average neighbor algorithms was excessive and
although storage of the actual distance matrix was not neces-
sary, it was necessary to store an expansive mapping matrix
that required large amounts of RAM for storage (Table 1). As
the degree of connectedness among sequences varies between
data sets, the modifications outlined above to the classical
algorithm may vary in their performance.

Leveraging observations to create a better heuristic. Above,
we demonstrated that heuristic algorithms do not generate
OTUs that are as well formed as the average neighbor algo-
rithm (Fig. 3; see Fig. S3 and S4 in the supplemental material);
however, the average neighbor algorithm can be considerably
slower and perhaps require computational resources that are
beyond the means of many investigators (Table 1). Based on
earlier results in this study, we made two important observa-
tions that could enable us to create an accurate and fast clus-
tering heuristic: (i) lineages within a taxonomic level (e.g.,
genus) are more different from each other than the thresholds
commonly used for OTU-based analyses (i.e., less than 0.10),
and (ii) a distance matrix can be split and the submatrices
processed in series or in parallel. Our simple heuristic involves
either splitting a collection of aligned sequences or a distance
matrix based on the taxonomic assignment of each sequence,
clustering the sequences, and then merging the OTU assign-
ments. For example, the 14,956 full-length sequences could be
assigned to 33 phyla plus one pool of sequences that could not
be assigned to a phylum. Then the sequence affiliated within
each phylum could be used to calculate pairwise distances to
each other and clustered into OTUs. Finally, the resulting
OTU lists from each phylum would be merged.

We evaluated this new heuristic by splitting either the
aligned sequences or the sparse distance matrix at the five
taxonomic levels between phylum and genus. The MCC values
were the same regardless of whether we split the sequences or
the distance matrix. The MCC values were indistinguishable
from the classical average neighbor algorithm when splitting
down to the level of order and clustering to the 0.10 threshold
(Fig. 4; see Fig. S5 and S6 in the supplemental material). Using
8 processors and splitting aligned sequences, we were able to
obtain OTUs that were as robust as the average neighbor using
the full-length, V13, and V35 sequences, respectively (Table
2). Even if only one processor was used, the new heuristic was
still considerably faster and produced more robust OTU as-
signments than any of the heuristics.

DISCUSSION

The field of microbial ecology has benefited from a growth
in the number of tools available to analyze the growing number
of 16S rRNA gene sequences. As we have shown in this study,
both OTU- and phylotype-based methods have unique chal-
lenges that affect one’s ability to implement the method and
interpret the results. The results presented in this study enable
researchers to better interpret and overcome these challenges.
There are a several extensions of this research that deserve
further consideration.

First, the primary limitation of the phylotype-based ap-
proach is that taxonomic outlines are not well suited for the
analysis of novel sequences from previously unidentified lin-
eages. Even among the reference sequences used by the RDP
to train the Bayesian classifier, 6.6% of the sequences do not
have a genus-level name. Among the full-length sequences we
analyzed, 19.1% of the sequences did not have a genus-level
name. A related problem is that the classifier is only capable of
classifying to the extent that it is provided for by the reference
taxonomies. For instance, it would be impossible to assign
sequences to the level of species because the taxonomies end at
the level of genus. Researchers can partially overcome this by
adding sequences to their reference database representing the
groups they are interested in and by extending their taxonomy
to the species level. Alternatively, a researcher could classify
their sequences to the deepest possible taxonomic level and
then to use an OTU-based approach to subdivide those groups
further (e.g., the genus data in Fig. 4, Fig. S5 and S6 in the
supplemental material, and Table 2). The challenges of this
approach include the inability to compare results of research
groups that use different taxonomies and the lingering difficulty
with mapping distance thresholds to distinguish between
groups within the same taxonomic level.

Second, others have observed that OTU-based methods are
more sensitive to sequencing errors than phylotype-based
methods (9, 12). Based on the results we have presented,
phylotype-based methods are less sensitive to such errors be-
cause they operate at a much broader level than OTU-based
methods. This leads to an overall muting of the effects of
sequencing errors. Interestingly, when others have rese-
quenced mock communities and used broad OTU definitions,

FIG. 4. Comparison of the Matthew’s correlation coefficients for
OTUs calculated from a threshold of 0.00 to 0.10 when using the
phylotype-OTU heuristic for full-length 16S rRNA gene sequences.
For each region, cutoff, and taxonomic level used to split the se-
quences, the correlation coefficients overlapped with each other, ex-
cept for the family and genus taxonomic levels. (See Fig. S5 and S6 in
the supplemental material for the same analysis using the V13 and V35
sequences, respectively.)
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the effects of sequencing errors are minimized (9, 12). Thus, it
is not that phylotype-based methods are not sensitive to se-
quencing errors, rather that the commonly used genus-level
cutoff represents such a broad distance that it masks the
amount of sequencing error.

Third, the dependence upon heuristics to overcome techni-
cal limitations of methods used to assign sequences to OTUs
has resulted in a sacrifice of accuracy. Instead we have devel-
oped a new heuristic that makes use of elements commonly
used in a typical sequence analysis pipeline to minimize com-
putational overhead. First, a common feature of the previous
heuristics was that they are implemented without a multiple
sequence alignment. Such an alignment is necessary for iden-
tifying chimeric sequences (1, 7). Furthermore, NAST-based
aligners have been parallelized and are capable of aligning 18
full-length sequences per second (19). Second, sequence clas-
sification is routinely used to describe the taxonomic structure
of a community by using robust classifiers (e.g., the Bayesian
classifier [24]) that can be parallelized and are capable of
classifying 0.7 full-length sequence per second per processor
with 1,000 bootstrapping iterations. Although the algorithmic
improvements made to the classical average-neighbor algo-
rithm are to be preferred to any heuristic, we have demon-
strated that the phylotype-OTU approach is the best heuristic
for when sequencing capacities overwhelm computational re-
sources.

As we have discussed previously, the genetic distances cal-
culated for 16S rRNA gene fragments are mediocre surrogates
for distances between full-length sequences (18). That it is
impossible to relate genetic distances to taxonomic data un-
derscores the observation that pyrotag data are a marker for a
marker (i.e., the 16S rRNA gene) of taxonomic diversity within
a community. Instead we have demonstrated how researchers
can perform a robust analysis using OTU-based methods and
link the resulting OTUs to taxonomic data to leverage the

wealth of phenotypic data related to those lineages. This
merger of taxonomy-independent and -dependent methods
will significantly enhance future experiments analyzing com-
munities by using 16S rRNA gene sequence data.

ACKNOWLEDGMENTS

We thank Anders Andersson for helpful conversations that helped us
to formulate our method of assessing the quality of OTU assignments.

This project was funded by the School of Medicine at the University
of Michigan and a grant from the National Science Foundation (award
0743432).

REFERENCES

1. Ashelford, K. E., N. A. Chuzhanova, J. C. Fry, A. J. Jones, and A. J.
Weightman. 2005. At least 1 in 20 16S rRNA sequence records currently held
in public repositories is estimated to contain substantial anomalies. Appl.
Environ. Microbiol. 71:7724–7736.

2. Baldi, P., S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen. 2000.
Assessing the accuracy of prediction algorithms for classification: an over-
view. Bioinformatics 16:412–424.

3. Cohan, F. M. 2002. What are bacterial species? Annu. Rev. Microbiol.
56:457–487.

4. DeSantis, T. Z., et al. 2006. Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB. Appl. Environ. Microbiol.
72:5069–5072.

5. Edgar, R. C. 2010. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 26:2460–2461.

6. Goris, J., et al. 2007. DNA-DNA hybridization values and their relation-
ship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol.
57:81–91.

7. Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon: a program to
detect chimeric sequences in multiple sequence alignments. Bioinformatics
20:2317–2319.

8. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-
independent studies on the emerging phylogenetic view of bacterial diversity.
J. Bacteriol. 180:4765–4774.

9. Huse, S., D. M. Welch, H. Morrison, and M. Sogin. 2010. Ironing out the
wrinkles in the rare biosphere through improved OTU clustering. Environ.
Microbiol. 12:1889–1898.

10. Huse, S. M., et al. 2008. Exploring microbial diversity and taxonomy using
SSU rRNA hypervariable tag sequencing. PLoS Genet. 4:e1000255.

11. Konstantinidis, K. T., A. Ramette, and J. M. Tiedje. 2006. The bacterial
species definition in the genomic era. Philos. Trans. R. Soc. Lond. B Biol. Sci.
361:1929–1940.

TABLE 2. Time required to use the phylotype-OTU heuristic when splitting sequences or distance matrices at various taxonomic depths for
full-length, V13, and V35 16S rRNA gene sequences

Region Input No. of processors
Wall time (min) for calculation of distance to levela:

Phylum Class Order Family Genus

Full length Distances 1 26.82 9.20 3.43 1.40 1.25
8 20.38 7.38 3.47 1.35 1.22

Sequences 1 50.43 16.48 5.97 1.72 1.13
8 17.38 4.50 1.77 0.73 0.80

V13 Distances 1 11.77 5.30 2.23 0.95 0.85
8 8.93 3.88 2.07 0.87 0.75

Sequences 1 15.82 5.73 2.23 0.70 0.52
8 6.83 1.75 0.95 0.42 0.57

V35 Distances 1 24.72 5.37 2.52 1.43 1.20
8 19.65 4.78 2.25 1.28 1.12

Sequences 1 24.43 5.30 1.80 0.60 0.52
8 13.35 2.20 0.80 0.43 0.57

a All times represent the wall time in minutes required for each analysis using the computer system described in Materials and Methods. Using 8 processors, the
full-length, V13, and V35 unique sequences sets required 15.07, 4.50, and 2.67 min, respectively, to calculate the sparse distance matrix.

VOL. 77, 2011 OTU METHODS 3225

 on January 17, 2016 by U
niversity of M

ichigan Library
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


12. Kunin, V., A. Engelbrektson, H. Ochman, and P. Hugenholtz. 2010. Wrinkles
in the rare biosphere: pyrosequencing errors can lead to artificial inflation of
diversity estimates. Environ. Microbiol. 12:118–123.

13. Lane, D. J. 1991. 16S/23S rRNA sequencing, p. 115–175. In E. Stackebrandt
and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics.
Wiley, New York, NY.

14. Legendre, P., and L. Legendre. 1998. Numerical ecology. Elsevier, New York, NY.
15. Li, W., and A. Godzik. 2006. CD-HIT: a fast program for clustering and

comparing large sets of protein or nucleotide sequences. Bioinformatics
22:1658–1659.

16. Liu, Z., T. Z. DeSantis, G. L. Andersen, and R. Knight. 2008. Accurate
taxonomy assignments from 16S rRNA sequences produced by highly par-
allel pyrosequencers. Nucleic Acids Res. 36:e120.

17. Pruesse, E., et al. 2007. SILVA: a comprehensive online resource for quality
checked and aligned ribosomal RNA sequence data compatible with ARB.
Nucleic Acids Res. 35:7188–7196.

18. Schloss, P. D. 2010. The effects of alignment quality, distance calculation
method, sequence filtering, and region on the analysis of 16S rRNA gene-
based studies. PLoS Comput. Biol. 6:e1000844.

19. Schloss, P. D. 2009. A high-throughput DNA sequence aligner for microbial
ecology studies. PLoS One 4:e8230.

20. Schloss, P. D., and J. Handelsman. 2005. Introducing DOTUR, a computer
program for defining operational taxonomic units and estimating species
richness. Appl. Environ. Microbiol. 71:1501–1506.

21. Schloss, P. D., et al. 2009. Introducing mothur: open-source, platform-inde-
pendent, community-supported software for describing and comparing mi-
crobial communities. Appl. Environ. Microbiol. 75:7537–7541.

22. Stackebrandt, E., and B. M. Goebel. 1994. A place for DNA-DNA reasso-
ciation and 16S rRNA sequence-analysis in the present species definition in
bacteriology. Int. J. Syst. Bacteriol. 44:846–849.

23. Sun, Y., et al. 2009. ESPRIT: estimating species richness using large collec-
tions of 16S rRNA pyrosequences. Nucleic Acids Res. 37:e76.

24. Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy. Appl. Environ. Microbiol. 73:5261–5267.

25. Ward, D. M. 1998. A natural species concept for prokaryotes. Curr. Opin.
Microbiol. 1:271–277.

3226 SCHLOSS AND WESTCOTT APPL. ENVIRON. MICROBIOL.

 on January 17, 2016 by U
niversity of M

ichigan Library
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/

