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The phylogenetic and ecological complexity of microbial communities necessitates the development of new
methods to determine whether two or more communities have the same structure even though it is not possible
to sample the communities exhaustively. To address this need, we adapted a method used in population
genetics, the parsimony test, to determine the relatedness of communities. Here we describe our implemen-
tation of the parsimony test, TreeClimber, in which we reanalyzed six previously published studies and
compared the results of the analysis to those obtained using �-LIBSHUFF.

Microbial communities are diverse, containing as many as
1012 individuals per g that represent thousands of species. In
light of this enormous biodiversity, comparing microbial com-
munities is challenging. Although many aspects of microbial
community analysis have been the foci of recent efforts to bring
statistical rigor to analysis of bacterial communities (12, 13, 17,
20, 23, 26–29), we continue to lack methods to compare com-
munities. Comparisons of community structure, which is the
distribution of the total number of individuals among the spe-
cies in the community (1), are essential for correlating the
relative abundance of a taxonomic group with a specific activ-
ity. For example, a comparison of soil communities that sup-
press plant pathogens with soil communities that do not sup-
press plant pathogens might identify the features of a community
that make a soil suppressive or suggest biological control
agents and focus efforts on their cultivation. In communities
that are too complex to sample more than a small proportion
of the members, it is not possible to state with confidence using
descriptive analyses whether the observed differences in se-
quence representation are due to random chance or to a bio-
logically significant difference. Therefore, quantitative tools
are needed to support statistical inferences based on samples
of a population.

We previously modified an analysis based on the Cramér-von
Mises statistic as implemented in LIBSHUFF (29) and desig-
nated our implementation �-LIBSHUFF (27). This test uses a
pairwise distance matrix to determine whether two samples are
drawn from the same population or whether one is a subset of
the other. One limitation of the LIBSHUFF-type of analysis is
that every pairwise comparison actually requires two hypothe-
sis tests. If two samples are to be compared, then two compari-
sons are made; if there are four samples, then there are 12 com-
parisons (number of comparisons � Ntreat [Ntreat � 1]). This
approach is comparable to performing numerous pairwise t
tests instead of performing a single analysis of variance
(ANOVA). Multiple comparisons require adjusting the family
type I error rate, which is the probability of incorrectly detect-

ing a significant difference, in order to maintain a desired
experiment-wise type I error rate that is typically set at 0.05.
Adjusting for the effects of multiple comparisons reduces the
statistical power to detect differences that actually exist (33). A
second limitation is that the user must use distance-based ap-
proaches to perform the analysis instead of potentially more
robust Bayesian, parsimony, or maximum-likelihood methods.
Since all phylogenetic approaches have limitations (9), it would
be advantageous if investigators had the flexibility to compare
their results using a variety of methods.

Recently, Martin (20) proposed adapting the parsimony test,
which is used in population genetics to describe gene flow (19,
30, 31), to make comparisons between 16S rRNA gene librar-
ies. This method has been adapted to perform a similar anal-
ysis called UniFrac (17). Microbial ecologists have used the
parsimony test to make comparisons using 16S rRNA (16, 34),
18S rRNA (25), ribulose 1,5-bisphosphate carboxylase/oxygen-
ase (22), aerobic carbon monoxide dehydrogenase (7), and
viral (3) sequence collections from a diverse collection of en-
vironments. Although the parsimony test has received broad
application in microbial ecology, no one has clearly articulated
the exact hypothesis tested by the method in statistical or
biological terms.

In previous implementations of the parsimony test workers
have used the MacClade (http://www.macclade.org) software
package, which is an expensive platform-specific computer pro-
gram that is not easily adaptable to this test. We developed a
free computer program, TreeClimber, which implements the
parsimony test in a rapid, easy-to-use, and streamlined man-
ner. Here we state the hypothesis evaluated in the parsimony
test, demonstrate TreeClimber’s ability to implement the par-
simony test, and discuss several aspects of the test’s implemen-
tation that have not been addressed previously.

MATERIALS AND METHODS

Parsimony test algorithm. The parsimony test consists of three parts (19, 30,
31). First, a composite phylogeny for a set of communities is reconstructed and
the taxa are associated with the treatment from which they originated. Second,
the minimum number of steps or transitions necessary to explain the covariation
of phylogeny with the treatments is determined. Finally, scores are calculated for
random phylogenetic trees generated by randomly linking taxa. This step is
repeated many times (n � 1,000) to obtain a probability distribution describing
the probability that each score is observed by a random process of assembling
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sequences into groups. TreeClimber performs the last two parts, producing a
probability distribution for observing each parsimony score using the tree(s)
submitted by the user and the random trees.

Phylogenetic reconstruction. Sequence alignments were constructed in ClustalW
(version 1.83) using a gap-opening penalty of 10.0 and a gap extension penalty of
0.10. Trees constructed using the neighbor-joining, bootstrapped neighbor-join-
ing, and parsimony algorithms were calculated using PAUP* (35). Because an
exhaustive search of the most parsimonious tree was not possible for all of the
data sets that we analyzed, we retained the 1,000 most parsimonious trees. Trees
constructed using MrBayes were calculated by assuming a general time-revers-
ible model and gamma-distributed rates. The MrBayes analysis used four
Markov chains, which were run for at most 500,000 generations so that the
maximum likelihood of each generation was relatively constant. The final 100,000
trees were sampled every 100 generations to obtain 1,000 trees. The most recent
releases of ARB (18), PHYLIP (10), PAUP* (35), MEGA3 (14), and MrBayes
(24) were obtained from the appropriate websites. NEXUS-formatted files used
to perform many of the simulations presented here are available on the Tree-
Climber website (http://www.plantpath.wisc.edu/fac/joh/treeclimber.html).

Scoring a tree by parsimony. Given a phylogenetic tree in which each taxon is
associated with a treatment, TreeClimber determines the most parsimonious
number of transitions between the treatments using Fitch’s algorithm (11). The
parsimony test algorithm uses a phylogenetic tree in which each exterior branch
(Fig. 1, leaves 1 to 8) is labeled according to the treatment from which the

sequence originated. The algorithm compares each leaf to determine the appro-
priate label for each of the interior nodes (Fig. 1, nodes a to g) by comparing the
labels of the two branches that share the same node. If there is an intersection
between the two sets of labels, then the node is labeled with the result of the
intersection and a penalty is not assessed to the parsimony score. If there is not
an intersection between the two labels, then the union of the two labels is applied
and a penalty of 1 is assessed to the parsimony score. This scoring algorithm can
be applied to any bifurcating tree with as many different labels as are desired.
Figure 1 shows an example for a phylogenetic tree from an analysis with two
treatments. The parsimony score for this tree was three.

Significance of parsimony score. TreeClimber constructed 10,000 randomly
joining trees for each test to generate each random probability distribution.
TreeClimber generates random joining trees by using the same number of indi-
viduals for each treatment that was found in the actual data set. The program
randomly selects either two taxa, two nodes, or a node and a taxon and joins
them at a new node. This process is repeated until a complete tree is constructed.
The parsimony score for each random tree is calculated. The fraction of the
10,000 randomly joining trees with that parsimony score is the probability of
observing that score by chance, assuming that the hypothesis being evaluated is
correct. A comparison of the parsimony score for the user-inputted tree or trees
to the cumulative probability distribution indicates the probability of observing
the same or a lower parsimony score by chance.

TreeClimber. TreeClimber is available free as C�� source code for compila-
tion in Linux or Mac OSX and as a binary executable for the Windows operating
system (http://www.plantpath.wisc.edu/fac/joh/treeclimber.html). Two input files
are required to run the program: a PHYLIP or NEXUS-formatted Newick file
containing one or more phylogenetic trees and a file containing the sequence
name and its corresponding treatment. The user can select the number of
randomly joining trees desired to construct the test distribution. A probability
distribution for any number of treatments and replicates can be determined
without input of an observed set of phylogenies or set of sequence identifiers.
Finally, TreeClimber generates a file containing the probability of observing each
parsimony score for the user and randomly joining trees.

RESULTS AND DISCUSSION

TreeClimber evaluation. We developed TreeClimber to
provide a streamlined method for performing the parsimony
test. To test our implementation of the parsimony test, we
evaluated TreeClimber using a variety of data sets obtained
from the literature (Table 1). The results of our implemen-
tation were consistent with the results observed in the orig-
inal studies. Phylogenetic trees generated in PHYLIP, ARB,
MEGA3, PAUP*, and MrBayes have been successfully used
in TreeClimber (Fig. 2).

FIG. 1. Examples of using Fitch’s algorithm (11) to score a phylo-
genetic tree when samples are obtained from two communities. The
letters represent treatments for the nodes, and the numbers represent
the treatment label for each sequence considered. The parsimony
scores (P) and treatment labels for each node as they aggregate
through the nodes are indicated.

TABLE 1. Comparison of P values obtained using �-LIBSHUFF and TreeClimber for various methods of
phylogenetic tree construction and 16S rRNA sequence collectionsa

Site (reference) Library name
(no. of sequences)

�-LIBSHUFF
P value

TreeClimber P value at 95th percentile (proportion of
P values that are �0.05)

Neighbor
joining Parsimony

Neighbor
joining

bootstrap
MrBayes

Sequencing batch reactors (2) SBR1 (97), SBR2 (92) 0.065, 0.747b 0.103 (0.000) 0.159 (0.003) 0.522 (0.032) 0.409 (0.005)
Arid soils (6) C0 (59), S0 (53) 0.012*, 0.187b 0.147 (0.000) 0.147 (0.000) 0.244 (0.355) 0.147 (0.483)
Scottish soil (21) SAF (138), SL (137) 0.030, 0.073b 0.004* (1.000) 0.018* (1.000) 0.031* (0.989) 0.047* (0.982)
Wisconsin soil (15) 1997 (139), 2000 (129) �0.001*, �0.001*b �0.001* (1.000) �0.001* (1.000) �0.001* (1.000) �0.001* (1.000)
Alpine tundra fungi (25) Spring (56), summer (27),

winter (42)
�0.001*c �0.001* (1.000) �0.001* (1.000) �0.001* (1.000) �0.001* (1.000)

Feces from patient receiving
antibiotics (36)

Preantibiotic (84), during
treatment (74),
postantibiotic (84)

�0.001*c �0.001* (1.000) �0.001* (1.000) �0.001* (1.000) �0.001* (1.000)

a Asterisks indicate P values that are less than 0.05 after correction for multiple comparisons. All P values are based on 10,000 randomizations. The P value at the
95th percentile is the P value where 95% of the user-supplied trees had a P value equal to or less than 0.05.

b The first value is the value for the analysis performed using the first library as the homologous library, and the second value is the value obtained when the second
library was used as the homologous library.

c The P value for all six comparisons was �0.001.
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A parallel analysis of each study was performed using �-
LIBSHUFF to determine whether each community investi-
gated was a subsample of the community represented in the
other library. In four of the six studies that we analyzed, we
obtained low P values by both techniques (Table 1). For one of
the six studies we calculated a low P value using �-LIBSHUFF
and a high P value using TreeClimber (6), and for another we
observed the opposite result (21). Differences in significance
between the two methods are likely due to differences in sta-
tistical power and the hypotheses tested in the analyses.

Since the parsimony test algorithm was introduced and im-
plemented in other studies (3, 7, 16, 22, 25, 34), we identified
five potentially problematic issues. The most significant issue
that deserves attention is stating the hypothesis that the par-
simony test evaluates. Other issues include choosing a phylog-
eny, performing the analysis with a subset of the data to iden-
tify effects of a treatment on a specific group of organisms,
designing appropriate experiments that are amenable to the
test, and determining whether to use duplicate sequences in
the analysis.

Hypothesis development. Martin (20) generically described
the application of a parsimony test as a test to determine
whether two 16S rRNA sequence collections harbor different
lineages. As developed by Maddison and Slatkin (19, 30, 31),
however, the hypothesis posits that populations in different
treatments are either panmictic, epidemic, or clonal. There are
a number of problems with applying the hypothesis to micro-
bial communities, including the lack of classical sexual mating
among bacteria, the lack of a single population of one species,

and the concepts of panmictic, epidemic, clonal and popula-
tions, which have been defined in microbiology to refer to the
association of genes at different loci using multilocus enzyme
electrophoresis (32).

For application to community phylogenies, it is necessary to
adapt the original hypothesis. Our modified hypothesis is that
two communities share an ancestral community structure (i.e.,
a coalescent community structure) and the phylogenetic dif-
ferences observed between two or more community structures
are due to an accumulation of random variation. Randomly
joining trees are an example of the possible phylogenies that
are observed if this hypothesis is correct because populations
are equally likely to be found in each treatment. Departures
from this hypothesis occur when populations in the communi-
ties experience some effect (i.e., perturbation or selection) that
causes populations to be either gained or lost. Alternatively,
some effect may impede communities from demonstrating
signs of variation. If populations experience selection pressure,
then populations of similar members are more likely to affiliate
with a single treatment than with multiple treatments. This
would result in a lower parsimony score than is expected by
random variation. If no random variation occurs, then the
same lineages found in one treatment are found in all of the
treatments. This would result in a parsimony score that is
higher than the score expected by random variation. Based on
the available data (Table 1), it seems unlikely that two or more
communities are identical to each other. Therefore, we are
interested in testing the probability that a treatment exerts
selection pressure on the structure of multiple communities.

FIG. 2. TreeClimber-generated probability distribution of MrBayes-generated and neighbor-joining (NJ) phylogenetic trees for the data of
McCaig et al. (21). A Scottish soil data set was compared to the distribution of scores obtained from 10,000 random joining trees when there were
137 and 138 samples for each treatment. The asterisk at a parsimony score of 84 indicates the score at which the cumulative random probability
was equal to 0.047. When MrBayes-generated trees were used, 98.2% of the trees had a P value less than 0.05 and the P value for the
neighbor-joining tree was 0.004.
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Phylogenetic reconstruction. We found considerable vari-
ability in P values in an analysis using different phylogenetic
methods, indicating that the robustness of the underlying phy-
logeny is critical to the analysis (Table 1). Comparisons of
phylogenies constructed using different methods may increase
the confidence that small P values are due to a biological effect
and are not a product of the methodology. We considered the
MrBayes-generated trees to be the most robust phylogeny
available because they represented an equiprobable random
sampling of the true phylogeny. When at least 95% of the 1,000
trees generated had a P value less than 0.05, we considered the
differences between treatments to be significant (Fig. 2).

A salient difference between the parsimony test and �-
LIBSHUFF is that �-LIBSHUFF calculates a continuous sta-
tistic and TreeClimber calculates a discrete statistic whose
range is dependent on the number of sequences analyzed. In a
�-LIBSHUFF analysis, if 10,000 randomizations are per-
formed, there are generally 10,000 different values for the
statistic. For the same number of randomizations, the distri-
bution is confined to a much narrower window of possibilities,
which means that a difference in the parsimony score of 1 or 2
can represent a large difference in the P value. This results in
decreased resolution among P values and may result in re-
duced statistical power. For example, when analyzing the data
set of Dunbar et al. (6), we obtained a parsimony score of 34
for the neighbor-joining and parsimony trees and a median
score of 33 using the bootstrapped neighbor-joining and Mr-
Bayes trees; these scores had P values of 0.147 and 0.081,
respectively. Had any of the scores been 32, the P value would
have been 0.040 and considered marginally significant. This
indicates that the analysis is sensitive to the quality of the
phylogeny.

Ideally, experiments using TreeClimber would be designed
to maximize the resolution among P values, resulting in im-
proved statistical power. The spread in parsimony scores be-
tween the 5th and 95th percentiles increased an average of 0.03
for every taxon added to two treatments when there were at
least 100 taxa for each treatment (data not shown). When there
were at least 100 sequences for each treatment, the 5th per-
centile parsimony score increased 0.65 for every taxon added
to each library (data not shown). Considering that only 53 and
59 sequences were obtained from both communities in the data
set of Dunbar et al. (6), it is likely that additional sequencing
of community members would result in a high probability of
finding evidence of differential selection pressure.

Experimental design. The 16S rRNA gene libraries of McCaig
et al. (21) from an unimproved pasture and an improved pas-
ture that received fertilizers have been extensively studied by
microbiologists developing tools to study microbial ecology (5,
12, 20, 26, 27, 29). Although the complete collection represents
three replicate 16S rRNA gene libraries from each of the
pastures, each of the previous analyses of the data set ignored
the nested experimental design, pooled the three libraries
within each site, and implemented a single-classification de-
sign. These accommodations were necessary because, unfortu-
nately, the parsimony test and LIBSHUFF-type tests are ame-
nable only to single-classification analysis.

In a classical nested ANOVA, it is permissible to pool rep-
licates and use a single-classification ANOVA when the vari-
ability between replicates within a treatment is not significant

(33). We used an analogous approach by considering each of
the three replicates for each pasture a separate treatment. A
comparison across the improved pasture libraries resulted in a
marginally high P value (87.6% of trees with a P value less than
0.05), and a low P value was observed for the comparison
across the unimproved libraries (100% of trees with a P value
less than 0.001) with trees obtained using the MrBayes phy-
logenies. This indicates that the improved soil replicates could
be pooled, while the unimproved soil replicates could not be
pooled. Pairwise comparisons of the three unimproved repli-
cates produced low P values (95% of trees in all three com-
parisons had a P value less than 0.015), indicating that the
community structures represented in the three libraries were
significantly different from one another. In light of this result
and the inability to account for intrasoil type variability in the
parsimony test analysis, it is unclear whether the low P values
observed when the pooled data sets were compared were due
to differences between the unimproved soil replicates or dif-
ferences between replicates of the unimproved soil. Depending
on how samples were selected, the data might suggest that
fertilization resulted in a more homogeneous distribution of
bacteria in the improved soils.

Schadt et al. (25) collected 18S rRNA gene sequences from
alpine soils in the spring (n � 56), summer (n � 27), and winter
(n � 42) to investigate seasonal variability in fungal commu-
nities. They did not report results of a comparison across all
three treatments or a pairwise comparison between the sum-
mer and winter treatments, but they did describe the results of
pairwise comparisons between the summer and spring se-
quence collections (100% of trees with a P value of �0.05) and
between the spring and winter sequence collections (60% of
trees with a P value of �0.05). The pairwise comparison ap-
proach is problematic because it increases the probability of
identifying significant differences that are due to chance (33).
However, when we replicated the analysis of Schadt et al. and
made one comparison across all three treatments, 100% of
1,000 trees had a P value less than 0.001, indicating that the
original investigators’ pairwise comparisons were appropriate.
As with a classical ANOVA, it is appropriate to make pairwise
comparisons only after showing that there is some experiment-
wide difference to mitigate the problems associated with mul-
tiple comparisons (33).

Analysis of individual lineages. Identification of the lineages
responsible for differences in community structure has been
accomplished by performing the parsimony test on trees in
which specific groups are removed and using trees that contain
sequences from only one group. The data set of McCaig et al.
(21) was analyzed by investigating the effects of the �-Proteo-
bacteria on community structure for improved and unim-
proved soil libraries (20). In the previous analysis, in which
neighbor-joining trees were used, when the �-Proteobacteria
sequences were removed, there was no statistically significant
difference between the two communities (P � 0.05), and when
the �-Proteobacteria from each library were compared, there
was a significant difference (P � 0.004) (20). The workers then
showed that a clade within the �-Proteobacteria having se-
quences similar to sequences of Rhodobacter, Paracoccus, and
Aquabacter spp. accounted for much of the observed difference
between �-Proteobacteria lineages. However, when we re-
moved the �-Proteobacteria and used a neighbor-joining tree in
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TreeClimber, we obtained a P value of 0.043, which indicated
that exclusion of the �-Proteobacteria lineages still showed
marginal, but significant, covariation between phylogeny and
treatment. As the original P value was not stated in the previ-
ous analysis, we do not know how different the previous P value
was from our own marginally significant result.

To illustrate the problem with pruning groups of sequences
from a phylogenetic tree, we used DOTUR (26) to assign
sequences to operational taxonomic units (OTUs). Defining an
OTU as a collection of sequences that are at most 0.30 Jukes-
Cantor distance unit from each other, we identified 23 OTUs
that contained between 1 and 105 sequences. Then for the
seven OTUs that contained 10 or more sequences, we serially
pruned the sequences from each OTU from the tree and re-
calculated the P value. As previously applied (20), if removing
the OTU resulted in a high P value, then the analysis indicated
that the organisms represented by the OTU were differentially
represented in the two communities. When we repeated the
analysis with neighbor-joining-generated trees and removed
each OTU, none of the P values was more than 0.05. When we
removed each of the seven OTUs from the overall phylogeny,
removing six of the OTUs resulted in less than 95% of the
MrBayes-generated trees having P values less than 0.05; the
seventh OTU contained �-Proteobacteria sequences. Although
it is probable that shifts among the �-Proteobacteria accounted
for the overall differences in community structure, the reduced
statistical power to detect differences caused by the removal of
38.2% of the sequence collection probably obscured the de-
tection of such an effect using the parsimony test.

We then calculated the P values for comparisons using only
the sequences in each of the pruned OTUs. After each OTU
was pruned, analysis of the MrBayes-generated trees revealed
that six of the seven OTUs exhibited random variation (95% of
all trees for each OTU had a P value greater than 0.05).
Removal of the seventh OTU, which contained 12 sequences
(Nimproved � 5, Nunimproved � 7) related to the �-proteobacte-
rium Legionella sp. sequence, resulted in a low P value (95% of
trees with a P value less than 0.05). Our inability to detect
other OTUs whose representation was the result of selection
pressure may have been due to a lack of statistical power in a
comparison of 10 to 105 sequences. Alternatively, we may have
found an OTU whose representation was the result of selection
pressure, because we performed a sufficient number of com-
parisons to find a difference by chance. Ultimately, studies
using domain-level PCR primers evaluate domain-level differ-
ences, not differences in specific lineages. Testing hypotheses
about specific lineages requires designing PCR primers for the
particular group and then testing the comparison (34).

Community membership or structure? The generic state-
ment that the parsimony test compares the differences in lin-
eages among groups implies that the test measures community
membership, not structure (20). In some analyses, sequences
that are identical within a treatment are removed from the
community phylogeny (25), and thus, abundance of types is not
measured. The hypothesis tested in the parsimony test is a
measure of differences in community structure, which takes
into account the composition and distribution of sequences. If
one lineage is the object of positive selection, it becomes dis-
proportionately more abundant than the same lineage in a
treatment that applies no positive selection. Measuring the

effect of selection pressures on a community requires knowing
the relative abundance of each lineage within each community.

We reevaluated the pairwise comparisons made by Schadt et
al. (25), who removed all duplicate sequences from each treat-
ment prior to their analysis. When we made comparisons
across all three treatments using TreeClimber (i.e., ANOVA-
style design), all of the MrBayes-generated trees had a P value
that was less than 0.001 when we included or excluded identical
sequences. Performing the summer-winter and summer-spring
pairwise comparisons with TreeClimber produced P values for
all MrBayes trees with and without the redundant sequences
that were less than 0.001. When we used TreeClimber to per-
form winter-spring pairwise comparisons with and without re-
dundant sequences, 95% of all MrBayes-generated trees had P
values that were less than 0.004 and 0.129, respectively. Using
nonparametric estimators of the Jaccard and Sorenson simi-
larity indices (4), we found that the similarity values were
significantly less than 1.0 for OTUs when the sequences within
an OTU were defined by a group of sequences that were at
most 4% different from one another. These results demon-
strate that the memberships of the communities were not sim-
ilar, underscoring the point that the parsimony test compares
community structure, not membership.

Conclusions. Molecular microbial ecology has advanced be-
yond cataloging sequences to elucidating ecological mecha-
nisms, which requires answering the general question, “are two
communities different?” The complexity of microbial commu-
nities makes addressing this question impossible without spe-
cialized tools. Many of the statistical tools introduced in the
last several years have been retrofitted from macroecology
population genetics. Although many tools have been devel-
oped in macroecology, it is critical to precisely define the hy-
pothesis when a tool is applied to microbial communities. For
example, the original description of the parsimony test de-
scribed it as a test for classical panmixia, a phenomenon that is
not found among the bacteria.

The parsimony test is a powerful tool for measuring mech-
anisms that force a community structure to change. Our anal-
yses assumed a one-tailed hypothesis test that would determine
whether the differences between two communities arose due to
random variation or whether lineages from one community
had become more dominant through negative or positive se-
lection pressures. This assumption was influenced by data sets
that showed that microbial communities are generally not
identical. A two-tailed test may be appropriate in other envi-
ronments in which the environment selects for a particular
community structure.

The parsimony test is not a panacea for statistical microbial
ecology studies. Experimental design and the discrete nature of
the probability distribution limit the types of analyses that can
be performed and the statistical power of the analyses. Al-
though LIBSHUFF-type analyses are limited by the require-
ment of performing two tests for every pairwise comparison,
they have the advantage that they are able to determine
whether one community structure is a subset of another. Other
methods, such as analysis of molecular variance (8, 20), can be
useful for determining whether the overall genetic variation
between two or more communities is greater than the diversity
within a community. Further work is necessary to develop
additional tests that are useful for time series analyses, multi-

VOL. 72, 2006 TreeClimber 2383

 on January 17, 2016 by guest
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


way ANOVA, and replicated samples. These advances may
provide other answers to the question, “are two communities
different?”
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