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Although copious qualitative information describes the members of the diverse microbial communities on
Earth, statistical approaches for quantifying and comparing the numbers and compositions of lineages in
communities are lacking. We present a method that addresses the challenge of assigning sequences to oper-
ational taxonomic units (OTUs) based on the genetic distances between sequences. We developed a computer
program, DOTUR, which assigns sequences to OTUs by using either the furthest, average, or nearest neighbor
algorithm for each distance level. DOTUR uses the frequency at which each OTU is observed to construct
rarefaction and collector’s curves for various measures of richness and diversity. We analyzed 16S rRNA gene
libraries derived from Scottish and Amazonian soils and the Sargasso Sea with DOTUR, which assigned
sequences to OTUs rapidly and reliably based on the genetic distances between sequences and identified
previous inconsistencies and errors in assigning sequences to OTUs. An analysis of the two 16S rRNA gene
libraries from soil demonstrated that they do not contain enough sequences to support a claim that they
contain different numbers of bacterial lineages with statistical confidence (P > 0.05), nor do they contain
enough sequences to provide a robust estimate of species richness when an OTU is defined as containing
sequences that are no more than 3% different from each other. In contrast, the richness of OTUs at the 3% level
in the Sargasso Sea collection began to plateau after the sampling of 690 sequences. We anticipate that an
equivalent extent of sampling for soil would require sampling more than 10,000 sequences, almost 100 times
the size of typical sequence collections obtained from soil.

An outstanding challenge in microbial ecology is to estimate
species richness based on 16S rRNA gene sequences. The
computational methods available to address this challenge are
limited. Sequences are usually grouped as operational taxo-
nomic units (OTUs) or phylotypes, both of which are defined
by electrophoretic pattern (9, 12, 18) or DNA sequence (1, 21).
Screening for unique 16S rRNA genes by electrophoretic pat-
tern can be complicated either by sequences that are more
than 3% different sharing the same pattern or by sequences
with less than 3% difference having different patterns (9, 22).
Nucleotide sequences provide a more precise analysis. Se-
quences with greater than 97% identity are typically assigned
to the same species, those with �95% identity are typically
assigned to the same genus, and those with �80% identity are
typically assigned to the same phylum, although these distinc-
tions are controversial (1, 2, 11, 13, 21, 24, 29). A genetic
distance is approximately equal to the converse of the identity
percentage. These cutoff values are simply a best fit of histor-
ical taxonomy with modern 16S rRNA gene sequencing, not a
rigorously validated hierarchy.

There are few methods available to assign sequences to
OTUs quickly based on sequence data (26). Investigators typ-
ically analyze a distance matrix manually for values that are
less than the cutoff level. This approach is problematic when
the distance relationships between three or more sequences
are not transitive, which forces the creation of a decision rule
that may not be consistently enforced. Furthermore, manually

applying a decision rule to a large distance matrix can be too
unwieldy, tedious, and time-consuming to be accurate.

To assign sequences quickly and accurately to OTUs, we
developed DOTUR (Distance-Based OTU and Richness;
the source code is available from the authors at http://www
.plantpath.wisc.edu/fac/joh/dotur.html). A PHYLIP (http:
//evolution.genetics.washington.edu/phylip.html)-generated
distance matrix is used as an input file to DOTUR, which as-
signs sequences to OTUs for every possible distance. DOTUR
then calculates values that are used to construct randomized
rarefaction and collector’s curves of observed OTUs, diversity
indices, and richness estimators. In this paper, we demonstrate
DOTUR’s dexterity by analyzing and comparing 16S rRNA
gene libraries constructed from soil and seawater, which have
been studied with other methods in previous reports.

MATERIALS AND METHODS

Sequence assignment in DOTUR. Three sequence assignment methods are
available in DOTUR: nearest neighbor, furthest neighbor, and average neighbor.
The nearest neighbor (i.e., single linkage) algorithm constructs a link when one
object (an individual sequence or groups of sequences) is similar to any of the
sequences in the object it is joining. The furthest neighbor (i.e., complete link-
age) method is a more constrained criterion, which assigns a sequence to an
object only if it is similar to all of the sequences in the group it is joining. The
average neighbor method (i.e., unweighted pair-group method by using arith-
metic averages) finds the two most similar entities and links them by averaging
the differences between the entities being joined and all of the other entities. A
more complete description of these methods is provided elsewhere (17), and a
manually calculated example is shown in the manual on the DOTUR website.

Richness estimation in DOTUR. DOTUR was designed to calculate various
diversity indices and richness estimators. Diversity indices and richness estima-
tors are useful to compare the relative complexity of two or more communities
and to estimate the completeness of sampling of a community. Once DOTUR
assigns sequences to OTUs, it performs a random sampling without replacement
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procedure. The probability of drawing a representative from an OTU is the
number of times the OTU was observed divided by the total number of se-
quences in the library. For each randomization, DOTUR calculates the Shan-
non-Weaver and Simpson diversity indices (19), the abundance-based coverage
estimator (ACE) (5, 6), and the bias-corrected Chao1 (4), interpolated jackknife
(3), and bootstrap (28) richness estimators with a 95% confidence interval (CI),
when applicable, as a function of sampling effort. Sample calculations are pro-
vided in the manual on the DOTUR website.

If the sequences are inputted in the order in which they were obtained,
DOTUR can construct the actual collector’s curve for each estimate by plotting
the CI against the sequencing effort to determine how many sequences are
required to obtain a desired level of precision for the estimate. Input and output
data for all of the sequence collections analyzed in this paper are available at the
DOTUR website.

RESULTS

Validation and evaluation of sequence assignments. To
test DOTUR, we analyzed the clone library constructed from
improved Scottish soil (21) (Table 1; Fig. 1). The sequences
were aligned by using ClustalW (ftp://ftp.ebi.ac.uk/pub/software
/unix/clustalw/), and we constructed a Jukes-Cantor corrected
distance matrix (10) by using the DNADIST program from
PHYLIP. We applied the nearest neighbor, average neighbor,
and furthest neighbor assignment algorithms implemented in
DOTUR and observed 114, 115, and 116 OTUs, respectively,
for each of the assignment algorithms (Table 1). The frequency
distributions observed by using the furthest neighbor algorithm
at a distance of 3% were identical to the distribution described
by McCaig et al. (21), indicating that DOTUR makes appro-
priate assignments.

There have been previous attempts to assign sequences from
this data set to OTUs. The authors of the Scottish soil study
identified 114 at the 3% distance level (Table 1; 21), whereas
113 have also been reported (14). These analyses illustrate how
DOTUR can provide better accuracy than manual counts of
sequences, and this level of accuracy will become even more
important as the size of clone libraries increases. We also used
the FastGroup program (26), which selects a reference se-
quence to which every other sequence is compared. If the
query sequence is within a designated percentage similarity, it

joins the group. This method is similar to the nearest neighbor
method with the exception that FastGroup compares each
query sequence to a single reference sequence instead of to all
of the sequences in the OTU. This analysis yielded 131 OTUs
at the 3% distance level. The problem with this approach is
that results can be skewed depending on which sequence is
selected by the program to be the reference. In this case, it
appears that the assignment was perhaps overly conservative.

When we compared the data produced by DOTUR to those
expected based on rarefaction theory, manual calculations,
and output from EstimateS (http://viceroy.eeb.uconn.edu
/estimates), the results were similar. DOTUR was considerably
faster than EstimateS (data not shown). Furthermore, DOTUR
performed the sequencing assignment procedure while Esti-
mateS could not. As DOTUR calculates the various richness
and diversity parameters for each distance level, it produces
separate files that can be used to generate lineage-through-

FIG. 1. Rarefaction curves (A) and lineage-through-time plot (B)
from DOTUR analysis using furthest neighbor assignment algorithm
with unimproved Scottish soil 16S rRNA gene library for various
distance levels. Error bars represent the 95% CI.

TABLE 1. Comparison of various techniques to determine the
frequency distribution and richness estimates for 16S rRNA

gene collections from Scottish and Amazonian soilsa

Source of
16S rRNA

gene library

Analysis
method

Total
no. of se-
quences

No. of
unique
OTUs

No. of OTUs with
nx sequencesb

n1 n2 n3 n4 n5 n6

Scottish soil McCaig 137 114 98 12 2 1 1 0
Hughes 137 113 96 13 2 1 1 0
FastGroup 137 131 127 3 0 1 0 0
NN 137 112 96 12 2 0 1 1
AN 137 113 97 12 2 0 2 0
FN 137 114 98 12 2 1 1 0

Amazonian soil FN 98 84 75 6 1 2 0 0

a OTUs were defined by using a distance level of 3%. The frequency distri-
bution of the improved Scottish soil 16S rRNA gene library of McCaig et al. (21)
was determined from rank abundance data from McCaig et al. (21) and Hughes
et al. (14), from output of the FastGroup program of Seguritan and Rowher (26),
and by using the three assignment algorithms implemented in DOTUR. For
comparison, the Amazonian soil library (2) was analyzed by using the furthest
neighbor algorithm in DOTUR. NN, nearest neighbor assignment algorithm;
AN, average neighbor assignment algorithm; FN, furthest neighbor assignment
algorithm.

b n1, no. of singletons; n2, no. of doubletons; etc.
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time plots, which describe how many OTUs are present for
various evolutionary distances (Fig. 1B). This type of analysis
has been described elsewhere (20, 23).

Application of DOTUR to the Amazonian soil clone library.
Hughes et al. (14) asked the provocative question, “Are mi-
crobes too diverse to count?” The most widely cited paper to
support an answer of yes is that of Borneman and Triplett (2),
who sampled 98 bacterial 16S rRNA gene from two Amazo-
nian rainforest soils and concluded that the 98 bacterial se-
quences were unique. Using DOTUR, we identified two pairs
of identical sequences (GenBank accession numbers U686617
and U68641 and U68620 and U68618) in the pooled Amazo-
nian data set. Instead of 98 singletons, there were actually 94
singletons and 2 doubletons when the definition of an OTU
was uniqueness.

Performing the DOTUR analysis with the pooled Amazo-
nian clone library, we found that the frequency distribution of
sequences in OTUs was comparable to that in the improved
Scottish clone library at other distances as well (Table 1) (Fig.
2). The rarefaction curve generated from the improved Scot-
tish sequences, when uniqueness determined entry into an
OTU, indicated that there was a 95% chance that if only 98
sequences had been sampled then the authors would have
identified between 93 and 97 OTUs. When a distance smaller
than 3% defined entry into an OTU, the CI after 98 sequences
was between 80 and 89 OTUs. The number of OTUs observed
from the Amazonian library was 94 when the OTU definition
was uniqueness and 84 when the OTU definition was set at 3%.
Therefore, it is impossible to conclude with confidence that
there is a difference in the richness observed between the
“exotic” east Amazonian soil and the “common” Scottish ag-
ricultural soil, because the number of observed OTUs from the
Amazonian soil falls within the 95% CI of the Scottish soil
after the sampling of 98 sequences. However, it is possible that
with further sequencing, differences in richness between the
two libraries would have been observed. Although the two
samples may have the same level of richness, it is possible that
the libraries contained a different composition of 16S rRNA
genes.

Application of DOTUR to the Sargasso Sea metagenome
sequence. Recently, Venter et al. (31) published an extensive
sequencing project that consisted of nearly 2 million sequenc-
ing reads and a total of 1.7 Gbp from uncultured organisms in
a composite 1.5-m3 sample from the Sargasso Sea. We ob-
tained each of the sequence readings from the GenBank FTP
server (ftp://ftp.ncbi.nih.gov/pub/TraceDB/environmental
_sequence/) and screened each one for a universal 16S rRNA
oligonucleotide (8) and a modified universal RNA polymerase
gene (rpoB) oligonucleotide (16). For each gene, we extracted
the 300 bp surrounding the probe sequences so that each
sequence started and ended at approximately the same loca-
tion within the gene and maximized the number of gene frag-
ments in the final gene library. There were 690 partial 16S
rRNA gene fragments and 507 partial rpoB fragments in our
final sequence collections.

We applied DOTUR to the two gene fragment collections as
described above (Fig. 3 and 4). We identified 114 16S rRNA
species and 304 rpoB species by using the 6% difference defi-
nition of species of Venter et al. (31) for protein coding se-
quences. A DOTUR analysis showed that when we varied the

rpoB species definition between 19 and 21% difference, the
95% CI for the final richness estimate based on the two genes
overlapped. By rarefaction, we found that the number of ob-
served rpoB OTUs fell within the 95% CI of the 16S rRNA
species fragment rarefaction curve (between 90 and 104 spe-
cies when 507 sequences were sampled) when the rpoB species
definition was between 22 and 23% difference and the 16S
rRNA species definition was 3% difference. By using the same
method, if we assumed that a 6% difference is appropriate for
defining a species by rpoB sequences, all members of a species
would need to have identical 16S rRNA sequences in order for
the rpoB and 16S rRNA richness estimates to have overlapping
95% CIs.

Collector’s curves for evaluating sampling progress. Non-
parametric richness estimators, such as ACE, Chao1, boot-
strap, and jackknife, enable researchers to use observed
frequencies of each OTU to estimate the richness of organisms
in a community without having to sample each organism. We

FIG. 2. Rarefaction curves (A) and lineage-through-time plot (B)
from DOTUR analysis using the furthest neighbor assignment algo-
rithm with the Amazonian soil 16S rRNA gene library for various
distance levels. Error bars represent the 95% CI.
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liken richness estimation to completing a sample-based census
of a population, where the goal is to determine the total num-
ber of people living in a country without having to account for
every individual in the population. Since it is not possible to
know a priori what the true richness of any community is, we
must decide upon a criterion for determining the minimum
number of sequences required to obtain an accurate statistical
census.

Earlier in this report, we used rarefaction curves to compare
the relative richness between two communities (Scottish versus
Amazonian soil) and to compare appropriate cutoff valves for
other phylogenetic anchors for measuring richness (16S rRNA
versus rpoB). However, if instead of measuring relative rich-
ness (OTUs observed) we are interested in the estimated rich-
ness (OTUs expected) and in determining the number of se-
quences necessary to obtain a measure of richness, then it is
necessary to use a nonrandomized collector’s curve. This anal-
ysis assumes that the probability of drawing any sequence is
independent of the sequence that was drawn before it and that
we do not know the probability of drawing each sequence. The

goal of determining the richness within a clone library is to
determine the probability of drawing a sequence that will
change the estimate. When that probability converges to zero,
then there is a high probability that the estimate is accurate
and that continued sampling beyond that point will increase
the confidence and precision of the estimate.

Because a rarefaction curve is the average of a large number
of randomized collector’s curves, the ability to measure the
probability of drawing a sequence that will change the richness
estimate is lost. A rarefaction curve of the Chao1 richness
estimate creates a smooth curve whose final value is the final
estimated value. Therefore, the shape of the rarefaction curve
will change as the terminal estimate changes. Since the curve is
smooth, the ability to gauge the probability that the estimate
will change with additional sequences is lost when a rarefaction
curve is used, but the overall shape of the collector’s curve does
not change. As new sequences are sampled, the preceding data
points in a collector’s curve stay the same, but the terminal
estimate changes.

FIG. 3. Rarefaction curve (A) and Chao1 richness estimate collec-
tor’s curve (B) using partial 16S rRNA gene sequences from the Sar-
gasso Sea metagenomic sequence. Error bars represent the 95% CI.

FIG. 4. Rarefaction curve (A) and Chao1 richness estimate collec-
tor’s curve (B) using partial rpoB sequences from the Sargasso Sea
metagenomic sequence. Error bars represent the 95% CI.
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Previous studies that used Chao1 estimate rarefaction curves
have suggested that when a nonparametric richness estimator
rarefaction curve levels off, the value to which the curve con-
verges is a reasonable estimate of the true richness (14). An
analysis of the soil clone library derived from the improved
Scottish soil suggested that the authors were confident that the
true species richness was 467, with a 95% confidence interval
between 333 and 681 OTUs after 137 sequences were sampled.
They noted that the Chao1 richness estimate rarefaction curve
began to level off after about 70 sequences (14). However,
when we assumed that the sequences in the Scottish soil clone
library were sampled in the order of their GenBank accession
number and used DOTUR to calculate the Chao1 richness
estimator, it was clear that the estimate continues to grow with
additional sampling and that the estimate is sensitive to the
addition of sequences (data not shown). Furthermore, when
we analyzed the range of the 95% CI as a function of sampling
effort by using the collector’s curve, there was a modest posi-
tive correlation with sequencing effort (R2 � 0.37) so that the
estimate’s uncertainty increases with additional sampling.
These results indicate that the 95% CI of between 333 and 681
OTUs is most likely too low. These results were masked by
using a Chao1 estimator rarefaction curve.

We constructed collector’s curves of the Chao1 estimator to
study the 16S rRNA fragment collection from the Sargasso Sea
to evaluate the completeness of sampling with a 3% difference
definition of a species. The Chao1 estimator predicted a min-
imum of 198 species (95% CI, between 187 and 211) by using
the 16S rRNA gene fragment collection and 187 species (95%
CI, 161 to 233) by using the rpoB sequence collection and an
OTU definition of 20% difference (Fig. 3B and 4B). At the
species level, there were no instantaneous 5% changes after
the 230th 16S rRNA gene fragment was sampled (Fig. 3B).
The species richness at this point in the sampling was 95 spe-
cies (95% CI, between 78 and 130), which was 48% of the
richness obtained after 690 sequences were sampled. Although
the estimated variability was substantially decreased when
more sequences were added to the collection, the richness
estimate was significantly lower than that observed after the
690th sequence was sampled. To improve the accuracy of the
estimate, we selected a smaller instantaneous change criterion
of 2.5%. We did not find any instantaneous changes greater
than 2.5% after the 662nd sequence was sampled; however,
only 28 sequences were sampled after that point, making it
difficult to judge the robustness of the estimate. The species
richness after the 662nd sequence was added was 194 species,
which was not significantly different from the final estimate of
198 species (95% CI, between 163 and 258). An alternative
method of reducing the negative bias was to hypothetically
cease sampling after a total of 430 sequences, which is 200
sequences more than the number required to reach the last
instantaneous change of greater than 5%. The richness esti-
mate after the addition of the 430th sequence was 155 species, or
78% of the richness, after all the sequences were collected.

A final approach we considered was to relax the definition of
an OTU to the phylum level or 20% difference. We did not
identify any instantaneous changes in the Chao1 estimate of
34 phyla after sampling the 486th sequence. This result gives
strong confidence in the estimate that the 95% CI (between 24
and 111) surrounding the estimate of 34 OTUs contains the

true richness when defining an OTU at 20% distance. The
estimate’s lack of precision is due to the number of singleton
OTUs (n1 � 7) relative to doubleton OTUs (n2 � 1). As the
number of singleton OTUs decreases, the precision of the
estimate will improve.

DISCUSSION

DOTUR assigns sequences rapidly and systematically to
OTUs by using all possible distances. In both clone libraries
that we analyzed, DOTUR assigned sequences to OTUs
more accurately and consistently than had previous methods.
DOTUR also assists in assessing the completeness of a se-
quencing effort and the reliability of richness estimates.

Analysis with DOTUR indicates that it is not possible to
state with confidence that the richness in the Amazonian li-
brary differs from that in the improved Scottish soil library.
However, in spite of the relative dearth of sequences in each of
these libraries compared to the estimated species richness in
1 g of soil, which is expected to be in the thousands of species
(30), further sequencing might indicate a difference in richness
between the libraries. In addition, the application of methods
described elsewhere may demonstrate that while the richness
between these two libraries is similar, their phylogenetic com-
position is different (20, 25, 27). Finally, a connection between
species richness or community composition with ecological
mechanisms remains to be determined. It is possible that two
communities could have considerably different membership
yet conduct similar biological processes.

The inclusion of the Sargasso Sea metagenome sequence has
provided an interesting application of DOTUR for describing
richness, comparing species definitions used for genes with
phylogenetic information, and evaluating the level of sampling
necessary to have confidence in an estimate. Venter et al. (31)
found 143 different 16S rRNA species and 428 different rpoB
species, and we found 114 and 303 different 16S rRNA and
rpoB species, respectively. This difference may be explained by
the fact that they restricted their analysis to those sequences
that overlapped by at least 40 bp, while we required all se-
quences to overlap by the same 300 bp. Regardless of this
difference in method, they predicted a minimum number of
species of near 1,000 species by using rpoB sequences and we
predicted a richness of 1,040 species by using their 6% differ-
ence species definition, suggesting that the methods produce
comparable results.

Since DOTUR compares multiple OTU definitions simulta-
neously, we were able to compare various species level defini-
tions by using 16S rRNA and rpoB gene sequences. Assuming
that the 3% difference in 16S rRNA sequence is a valid defi-
nition of a species, a protein coding sequence species definition
would then be near 20%. We found similar results with protein
coding sequences other than rpoB that have been used as
phylogenetic anchors (data not shown). A value of 20% is
more consistent than 6% with previous definitions of species
using protein coding sequences. For example, a difference of
30% in DNA-DNA hybridization analysis is used to differen-
tiate between species. Our use of DOTUR accounts for dif-
ferences in the rate of evolution for these two genes. One
potential concern is that any estimates made by using 16S
rRNA sequences is inflated, since bacteria are known to have
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multiple copies of this gene in their genome. Although it is
predicted that most slow-growing bacteria that dominate the
environment have, on average, close to 1 copy per genome
(15), multiple copies from a single genome would have to be
more than 3% different to have an effect on our analysis. If
intragenomic variability was greater than 3%, the number of
16S rRNA OTUs would decrease, resulting in an even lower
species definition for protein coding sequences. Any distance
level that is selected to differentiate species will be arbitrary
and consequently controversial, but it will serve as a useful
benchmark for future analyses.

When the number of different OTUs observed is less than
twice the square root of the total richness, the Chao1 richness
estimator is strongly correlated with the sequencing effort. If
we assume that there are roughly 4,000 species OTUs in a
gram of soil (30) and 150 in a milliliter of seawater (7), then at
least 125 and 17 different OTUs, respectively, would need to be
sampled before the correlation between richness and sequenc-
ing effort begins to decrease. However, we do not know how
many sequences are required to reach the condition in which
there is no correlation between sequencing effort and richness.
In soil samples, we demonstrated that 137 sequences were
insufficient to estimate richness reliably when distances of 3%
were used to define an OTU. Using the Sargasso Sea samples,
which is thought to contain one-tenth the richness of soil (7),
we found that a total of 690 sequences was almost sufficient to
obtain an accurate estimate of species richness and was suffi-
cient to estimate richness when a 20% difference was used to
define an OTU. It is likely that at least 10,000 sequences would
be necessary to approach an estimate of the true species rich-
ness in soil. To evaluate sampling progress, we suggest tracking
the richness estimation collector’s curve and sampling until
there are no instantaneous 2.5% changes in richness over 300
sequences.

When the Scottish and Amazonian soil sequences were re-
ported, sequencing was quite expensive and laborious. With
present technology, which is both less expensive and largely
automated, we have the opportunity to generate and sequence
large 16S rRNA gene libraries that may be sufficient in size to
provide accurate estimates and comparisons of richness even
in species-rich environments, such as soil.
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